1. How many patients have repeat fistulogram in the follow up period?

count any patient who had multiple rows in the dataset

## [1] 0.508

count only those who had repeated fistulogram in the same lesion

## [1] 0.218

2. How many patients developed new lesions in the subsequent fistulogram?

## [1] 0.258

3. The distribution of lesions in each type of fistula (locationoffistula)

##                     lesion
## locationofthefistula  2  4  5  6  7  8  9 10 11 12 14
##                    1 12  3  0  3  4  0  1  0  0  2  0
##                    2 22  6 38 13  6  1 11  1  3  0 27
##                    3  9  9  0  4  3  1  5  0  1  0 10

4. Angioplasty survival for each lesion:

##                        25    50  75
## lesion.group=l12l13l14 84 107.0 187
## lesion.group=l2l4      91 108.5 255
## lesion.group=l5l6l7l8  70 105.0 216
## Analysis of Deviance Table
##  Cox model: response is Surv(surv.days, as.numeric(event))
## Terms added sequentially (first to last)
## 
##               loglik  Chisq Df Pr(>|Chi|)
## NULL         -285.88                     
## lesion.group -284.81 2.1344  2      0.344

##  25  50  75 
##  75 111 215
## Call: survfit(formula = Surv(surv.days, as.numeric(event)) ~ 1, data = dat.surv.lesion)
## 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     2    105       1   0.9905 0.00948       0.9721        1.000
##     5    104       1   0.9810 0.01334       0.9552        1.000
##     8    103       1   0.9714 0.01626       0.9401        1.000
##    12    102       1   0.9619 0.01868       0.9260        0.999
##    15    100       2   0.9427 0.02273       0.8992        0.988
##    18     98       1   0.9330 0.02445       0.8863        0.982
##    28     97       2   0.9138 0.02747       0.8615        0.969
##    36     95       1   0.9042 0.02881       0.8494        0.962
##    41     94       4   0.8657 0.03340       0.8027        0.934
##    42     90       1   0.8561 0.03438       0.7913        0.926
##    43     89       2   0.8369 0.03620       0.7688        0.911
##    54     87       3   0.8080 0.03860       0.7358        0.887
##    66     84       1   0.7984 0.03932       0.7249        0.879
##    70     83       2   0.7791 0.04066       0.7034        0.863
##    72     81       3   0.7503 0.04243       0.6716        0.838
##    75     78       3   0.7214 0.04395       0.6402        0.813
##    76     75       1   0.7118 0.04440       0.6299        0.804
##    84     73       1   0.7021 0.04485       0.6194        0.796
##    85     72       1   0.6923 0.04527       0.6090        0.787
##    89     71       2   0.6728 0.04605       0.5883        0.769
##    91     69       2   0.6533 0.04673       0.5678        0.752
##    93     67       1   0.6436 0.04704       0.5577        0.743
##    94     66       2   0.6241 0.04760       0.5374        0.725
##    98     64       4   0.5850 0.04845       0.4974        0.688
##    99     60       1   0.5753 0.04862       0.4875        0.679
##   100     59       2   0.5558 0.04888       0.4678        0.660
##   105     57       3   0.5265 0.04914       0.4385        0.632
##   107     54       1   0.5168 0.04919       0.4288        0.623
##   109     53       1   0.5070 0.04922       0.4192        0.613
##   111     52       2   0.4875 0.04922       0.4000        0.594
##   112     50       6   0.4290 0.04877       0.3434        0.536
##   114     44       1   0.4193 0.04862       0.3340        0.526
##   123     43       1   0.4095 0.04846       0.3248        0.516
##   138     42       1   0.3998 0.04828       0.3155        0.507
##   144     41       1   0.3900 0.04807       0.3063        0.497
##   154     40       1   0.3803 0.04785       0.2972        0.487
##   168     39       1   0.3705 0.04761       0.2880        0.477
##   170     38       1   0.3608 0.04734       0.2790        0.467
##   178     37       1   0.3510 0.04706       0.2699        0.457
##   182     36       2   0.3315 0.04642       0.2520        0.436
##   185     34       1   0.3218 0.04607       0.2431        0.426
##   187     33       1   0.3120 0.04569       0.2342        0.416
##   192     32       1   0.3023 0.04529       0.2254        0.405
##   195     31       1   0.2925 0.04487       0.2166        0.395
##   197     30       1   0.2828 0.04442       0.2078        0.385
##   201     29       2   0.2633 0.04344       0.1905        0.364
##   213     27       1   0.2535 0.04291       0.1819        0.353
##   215     26       1   0.2438 0.04236       0.1734        0.343
##   216     25       1   0.2340 0.04177       0.1649        0.332
##   226     24       1   0.2243 0.04115       0.1565        0.321
##   235     23       1   0.2145 0.04050       0.1482        0.311
##   252     22       2   0.1950 0.03910       0.1317        0.289
##   255     19       1   0.1848 0.03836       0.1230        0.278
##   267     18       1   0.1745 0.03758       0.1144        0.266
##   272     17       1   0.1642 0.03674       0.1059        0.255
##   300     15       1   0.1533 0.03589       0.0969        0.243
##   322     14       1   0.1423 0.03495       0.0880        0.230
##   401      6       1   0.1186 0.03630       0.0651        0.216
##   436      3       1   0.0791 0.04034       0.0291        0.215

5. The distribution of number of lesions in each fistulogram

##                         rowSums(dat[, 15:26] == "Y")
## dat$locationofthefistula  0  1  2  3  4
##                        1  0 19 11  6  0
##                        2  4 93 45  9  2
##                        3  4 49 21  0  0