Josh Day
March 24, 2014
Sections 12.6 and 12.7
library(MASS) # Data (Boston)
library(rpart) # Trees
library(ipred) # Bagging
library(randomForest) # Random Forest
library(gbm) # L2 Boosting
n <- dim(Boston)[1]
train <- sample(1:n, .66*n)
Boston.train <- Boston[train,]
Boston.validate <- Boston[-train,]
\[ Y_i = f^0(X_i)+\epsilon_i, \;i=1,...,n \] \[ \epsilon_i \sim_{iid} [0, \;\sigma^2] \]
\[ \begin{aligned} B_m &= B_{m-1}+H(I-B_{m-1}) \\ &= I-(I-H)^m \end{aligned} \]
[1]
[1]
Nadaraya-Watson kernel estimator:
[1]
where:
\[ Y_i = \sum_{j=1}^p \beta_j X_i^{(j)}+\epsilon_i, \; i=1,...,n \]
where
[2]
[1]
Consider the general linear model
[1]
with link function \( g(\cdot) \) and empirical risk function:
[1]
In every iteration, we have previous set of variables \( S^{[m-1]}\subseteq\{1,...,p\} \)
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]