Loading and pre-processing Data

Get PPMI filtered dataset and Data Dictionary from NeuroMeasures folder on Dropbox

require(repmis)
## Loading required package: repmis
ppmi_original <- repmis::source_DropboxData("PPMI_PD_filtered.csv", "mkz3fusxnrfe54b", sep = ",",header = TRUE)
## Downloading data from: https://dl.dropboxusercontent.com/s/mkz3fusxnrfe54b/PPMI_PD_filtered.csv
## SHA-1 hash of the downloaded data file is:
## 2b913b1c611f60c3a2bfbd0de21c9cf326d6b035
dictionary_ppmi <- repmis::source_DropboxData("Data_Dictionary.csv", "umbi4gnefezu5f4", sep = ",",header = TRUE)
## Downloading data from: https://dl.dropboxusercontent.com/s/umbi4gnefezu5f4/Data_Dictionary.csv
## SHA-1 hash of the downloaded data file is:
## 55793be65b64e1c325c207f6bbeff676bccc7a8a
ppmi <- ppmi_original


Dimensions, head and structure of ppmi dataset

dim(ppmi)
## [1] 397 122
head(ppmi)
##   PATNO AGE Disease Duration MDS_UPDRS Total NP1DDS NP2FREZ VLTANIM VLTVEG
## 1  3400  39                9              50      0       1      22     24
## 2  3403  69                4              51      0       0      19      9
## 3  3406  35                7              36      0       0      15     12
## 4  3407  65                7              20      0       0      25     12
## 5  3409  63                2              43      0       0      18     15
## 6  3051  71                7              41      0       0      18     16
##   VLTFRUIT AGE_ASSESS_SFTANIM DVS_SFTANIM DVT_SFTANIM PTINBOTH TMGAMBLE
## 1       17                 39          11          42        1        0
## 2       10                 68          10          48        1        0
## 3       16                 34           8          30        1        0
## 4       11                 65          13          60        1        0
## 5       14                 63           9          47        1        0
## 6       13                 71           9          45        3        0
##   CNTRLGMB TMSEX CNTRLSEX TMBUY CNTRLBUY TMEAT CNTRLEAT TMTORACT TMTMTACT
## 1        0     0        0     0        0     1        0        0        0
## 2        0     0        0     0        0     0        0        0        0
## 3        0     0        0     0        0     0        0        0        0
## 4        0     0        0     0        0     0        0        0        0
## 5        0     0        0     0        0     0        0        0        0
## 6        0     0        0     0        0     0        0        0        0
##   TMTRWD TMDISMED CNTRLDSM GENDER BIOMOM BIOMOMPD BIODAD BIODADPD FULSIB
## 1      0        0        0      0      1        0      1        0      2
## 2      0        0        0      2      1        0      1        0      3
## 3      0        0        0      2      1        0      1        0      4
## 4      0        0        0      2      1        0      1        0      1
## 5      0        0        0      2      1        0      1        0      0
## 6      0       NA       NA      2      1        0      1        1      0
##   FULSIBPD HAFSIB HAFSIBPD MAGPAR MAGPARPD PAGPAR PAGPARPD MATAU MATAUPD
## 1        0      0       NA      2        0      2        0     1       0
## 2        0      0       NA      2        0      2        0     4       0
## 3        0      0        0      2        0      2        1     5       0
## 4        0      1        0      2        0      2        0     3       0
## 5       NA      4        0      2        0      2        0     1       0
## 6        0      0        0      2        0      2        0    17       0
##   PATAU PATAUPD KIDSNUM KIDSPD DOMSIDE CAUDATE_R CAUDATE_L PUTAMEN_R
## 1     1       0       0      0       1      1.17      1.53      0.53
## 2     1       0       3      0       2      1.64      1.19      0.65
## 3     5       0       1      0       1      1.91      2.64      0.78
## 4     2       0       2      0       1      2.27      2.50      0.90
## 5     2       0       2      0       2      2.36      1.93      0.86
## 6     2       0       3      0       2      1.73      1.93      0.95
##   PUTAMEN_L Mean Striatum Mean Caudate Mean Putamen SDMTOTAL SDMTVRSN
## 1      0.49        0.9300        1.350        0.510       47        1
## 2      0.43        0.9775        1.415        0.540       32        1
## 3      1.21        1.6350        2.275        0.995       49        1
## 4      1.20        1.7175        2.385        1.050       48        1
## 5      0.69        1.4600        2.145        0.775       45        1
## 6      0.74        1.3375        1.830        0.845       37        1
##   AGE_ASSESS_SDM DVSD_SDM DVT_SDM STAIAD1 STAIAD2 STAIAD3 STAIAD4 STAIAD5
## 1             39   -0.667   43.33       3       2       1       1       3
## 2             68   -1.000   40.00       2       2       2       2       3
## 3             34   -1.000   40.00       4       4       1       2       2
## 4             65    0.400   54.00       4       3       1       1       4
## 5             63   -0.300   47.00       4       4       2       2       3
## 6             71   -0.583   44.17       4       4       1       1       4
##   STAIAD6 STAIAD7 STAIAD8 STAIAD9 STAIAD10 STAIAD11 STAIAD12 STAIAD13
## 1       1       2       2       1        3        3        2        1
## 2       1       1       3       3        3        3        3        2
## 3       1       1       3       1        4        3        1        1
## 4       1       2       3       1        3        4        1        1
## 5       1       1       4       1        3        4        1        1
## 6       1       1       4       1        4        4        1        1
##   STAIAD14 STAIAD15 STAIAD16 STAIAD17 STAIAD18 STAIAD19 STAIAD20 STAIAD21
## 1        1        3        3        2        1        3        3        2
## 2        3        2        2        2        2        2        2        3
## 3        2        4        3        1        1        4        4        3
## 4        1        4        2        2        1        4        4        4
## 5        1        3        4        1        1        2        4        3
## 6        2        4        4        1        1        4        4        4
##   STAIAD22 STAIAD23 STAIAD24 STAIAD25 STAIAD26 STAIAD27 STAIAD28 STAIAD29
## 1        3        2        1        1        2        1        2        3
## 2        2        3        2        1        2        3        2        1
## 3        3        2        3        2        2        2        3        4
## 4        1        4        1        1        3        4        2        1
## 5        2        4        1        1        2        3        2        2
## 6        1        4        1        1        3        4        1        2
##   STAIAD30 STAIAD31 STAIAD32 STAIAD33 STAIAD34 STAIAD35 STAIAD36 STAIAD37
## 1        1        2        2        2        2        2        3        4
## 2        3        1        2        2        2        2        3        1
## 3        3        2        3        3        3        3        2        4
## 4        3        1        1        3        4        1        3        1
## 5        3        1        1        4        4        2        4        2
## 6        4        1        1        4        3        1        4        1
##   STAIAD38 STAIAD39 STAIAD40 EDUCYRS HANDED PTCGBOTH DRMVIVID DRMAGRAC
## 1        2        3        4      18      1        1        1        1
## 2        1        3        2      18      1        1        1        1
## 3        3        2        2      18      1        1        1        1
## 4        1        4        1      16      3        3        1        0
## 5        2        4        2      14      3        1        1        0
## 6        1        4        1      18      1        3        1        0
##   DRMNOCTB SLPLMBMV SLPINJUR DRMVERBL DRMFIGHT DRMUMV DRMOBJFL MVAWAKEN
## 1        0        1        0        1        1      1        1        1
## 2        0        1        0        0        0      0        0        0
## 3        0        1        0        0        0      0        1        0
## 4        0        1        0        0        0      0        0        0
## 5        0        1        0        0        1      0        0        0
## 6        0        1        1        1        1      0        0        0
##   DRMREMEM SLPDSTRB STROKE HETRA PARKISM RLS NARCLPSY DEPRS EPILEPSY
## 1        1        0      0     0       1   0        0     1        0
## 2        0        1      0     0       1   0        0     0        0
## 3        1        1      0     0       1   0        0     1        0
## 4        0        1      0     0       1   0        0     0        0
## 5        0        1      0     0       1   0        0     0        0
## 6        1        1      0     0       1   0        0     0        1
##   BRNINFM CNSOTH
## 1       0      0
## 2       0      0
## 3       0      0
## 4       0      0
## 5       0      0
## 6       1      0
str(ppmi)
## 'data.frame':    397 obs. of  122 variables:
##  $ PATNO             : int  3400 3403 3406 3407 3409 3051 3502 3500 3150 3451 ...
##  $ AGE               : num  39 69 35 65 63 71 69 49 57 54 ...
##  $ Disease Duration  : num  9 4 7 7 2 7 6 4 23 7 ...
##  $ MDS_UPDRS Total   : num  50 51 36 20 43 41 47 50 28 26 ...
##  $ NP1DDS            : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ NP2FREZ           : int  1 0 0 0 0 0 0 1 0 0 ...
##  $ VLTANIM           : int  22 19 15 25 18 18 20 24 19 23 ...
##  $ VLTVEG            : int  24 9 12 12 15 16 12 11 17 11 ...
##  $ VLTFRUIT          : int  17 10 16 11 14 13 14 14 22 11 ...
##  $ AGE_ASSESS_SFTANIM: int  39 68 34 65 63 71 69 49 57 54 ...
##  $ DVS_SFTANIM       : int  11 10 8 13 9 9 10 12 10 12 ...
##  $ DVT_SFTANIM       : int  42 48 30 60 47 45 50 54 50 51 ...
##  $ PTINBOTH          : int  1 1 1 1 1 3 1 1 1 1 ...
##  $ TMGAMBLE          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ CNTRLGMB          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ TMSEX             : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ CNTRLSEX          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ TMBUY             : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ CNTRLBUY          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ TMEAT             : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ CNTRLEAT          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ TMTORACT          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ TMTMTACT          : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ TMTRWD            : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ TMDISMED          : int  0 0 0 0 0 NA 0 0 NA 0 ...
##  $ CNTRLDSM          : int  0 0 0 0 0 NA 0 0 NA 0 ...
##  $ GENDER            : int  0 2 2 2 2 2 2 0 1 2 ...
##  $ BIOMOM            : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ BIOMOMPD          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ BIODAD            : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ BIODADPD          : int  0 0 0 0 0 1 0 0 0 0 ...
##  $ FULSIB            : int  2 3 4 1 0 0 2 3 0 5 ...
##  $ FULSIBPD          : int  0 0 0 0 NA 0 0 0 NA 0 ...
##  $ HAFSIB            : int  0 0 0 1 4 0 1 0 0 0 ...
##  $ HAFSIBPD          : int  NA NA 0 0 0 0 0 NA NA 0 ...
##  $ MAGPAR            : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ MAGPARPD          : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ PAGPAR            : int  2 2 2 2 2 2 2 2 2 2 ...
##  $ PAGPARPD          : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ MATAU             : int  1 4 5 3 1 17 3 5 4 3 ...
##  $ MATAUPD           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ PATAU             : int  1 1 5 2 2 2 4 1 4 12 ...
##  $ PATAUPD           : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ KIDSNUM           : int  0 3 1 2 2 3 2 0 0 2 ...
##  $ KIDSPD            : int  0 0 0 0 0 0 0 NA NA 0 ...
##  $ DOMSIDE           : int  1 2 1 1 2 2 1 1 2 2 ...
##  $ CAUDATE_R         : num  1.17 1.64 1.91 2.27 2.36 1.73 1.95 1.67 2.46 1.77 ...
##  $ CAUDATE_L         : num  1.53 1.19 2.64 2.5 1.93 1.93 2.51 2.05 1.94 1.57 ...
##  $ PUTAMEN_R         : num  0.53 0.65 0.78 0.9 0.86 0.95 0.91 0.56 0.87 1 ...
##  $ PUTAMEN_L         : num  0.49 0.43 1.21 1.2 0.69 0.74 0.92 0.85 0.65 0.68 ...
##  $ Mean Striatum     : num  0.93 0.978 1.635 1.718 1.46 ...
##  $ Mean Caudate      : num  1.35 1.42 2.27 2.38 2.14 ...
##  $ Mean Putamen      : num  0.51 0.54 0.995 1.05 0.775 0.845 0.915 0.705 0.76 0.84 ...
##  $ SDMTOTAL          : int  47 32 49 48 45 37 40 57 42 42 ...
##  $ SDMTVRSN          : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ AGE_ASSESS_SDM    : num  39 68 34 65 63 71 69 49 57 54 ...
##  $ DVSD_SDM          : num  -0.667 -1 -1 0.4 -0.3 ...
##  $ DVT_SDM           : num  43.3 40 40 54 47 ...
##  $ STAIAD1           : int  3 2 4 4 4 4 4 3 3 3 ...
##  $ STAIAD2           : int  2 2 4 3 4 4 4 3 4 4 ...
##  $ STAIAD3           : int  1 2 1 1 2 1 2 2 1 2 ...
##  $ STAIAD4           : int  1 2 2 1 2 1 1 4 1 2 ...
##  $ STAIAD5           : int  3 3 2 4 3 4 4 3 3 2 ...
##  $ STAIAD6           : int  1 1 1 1 1 1 1 2 1 1 ...
##  $ STAIAD7           : int  2 1 1 2 1 1 1 3 1 1 ...
##  $ STAIAD8           : int  2 3 3 3 4 4 4 2 3 2 ...
##  $ STAIAD9           : int  1 3 1 1 1 1 1 3 1 1 ...
##  $ STAIAD10          : int  3 3 4 3 3 4 4 3 3 2 ...
##  $ STAIAD11          : int  3 3 3 4 4 4 4 2 3 2 ...
##  $ STAIAD12          : int  2 3 1 1 1 1 2 3 1 2 ...
##  $ STAIAD13          : int  1 2 1 1 1 1 1 2 1 3 ...
##  $ STAIAD14          : int  1 3 2 1 1 2 1 2 2 1 ...
##  $ STAIAD15          : int  3 2 4 4 3 4 4 2 3 3 ...
##  $ STAIAD16          : int  3 2 3 2 4 4 4 3 2 3 ...
##  $ STAIAD17          : int  2 2 1 2 1 1 2 4 1 1 ...
##  $ STAIAD18          : int  1 2 1 1 1 1 1 2 1 1 ...
##  $ STAIAD19          : int  3 2 4 4 2 4 4 2 4 3 ...
##  $ STAIAD20          : int  3 2 4 4 4 4 4 2 4 3 ...
##  $ STAIAD21          : int  2 3 3 4 3 4 3 2 4 3 ...
##  $ STAIAD22          : int  3 2 3 1 2 1 1 3 1 2 ...
##  $ STAIAD23          : int  2 3 2 4 4 4 4 2 3 3 ...
##  $ STAIAD24          : int  1 2 3 1 1 1 3 1 1 1 ...
##  $ STAIAD25          : int  1 1 2 1 1 1 1 2 1 1 ...
##  $ STAIAD26          : int  2 2 2 3 2 3 2 2 4 3 ...
##  $ STAIAD27          : int  1 3 2 4 3 4 4 2 3 3 ...
##  $ STAIAD28          : int  2 2 3 2 2 1 1 2 1 1 ...
##  $ STAIAD29          : int  3 1 4 1 2 2 2 2 1 1 ...
##  $ STAIAD30          : int  1 3 3 3 3 4 4 3 4 3 ...
##  $ STAIAD31          : int  2 1 2 1 1 1 1 3 2 1 ...
##  $ STAIAD32          : int  2 2 3 1 1 1 1 3 2 1 ...
##  $ STAIAD33          : int  2 2 3 3 4 4 4 4 4 4 ...
##  $ STAIAD34          : int  2 2 3 4 4 3 4 2 2 4 ...
##  $ STAIAD35          : int  2 2 3 1 2 1 1 2 1 1 ...
##  $ STAIAD36          : int  3 3 2 3 4 4 4 3 4 3 ...
##  $ STAIAD37          : int  4 1 4 1 2 1 2 2 2 1 ...
##  $ STAIAD38          : int  2 1 3 1 2 1 1 2 2 1 ...
##  $ STAIAD39          : int  3 3 2 4 4 4 4 2 4 4 ...
##  $ STAIAD40          : int  4 2 2 1 2 1 1 2 1 1 ...
##  $ EDUCYRS           : int  18 18 18 16 14 18 16 13 13 18 ...
##   [list output truncated]


Set vars (variables) names and to lowercase

names(ppmi) <- tolower(names(ppmi))
names(dictionary_ppmi) <- tolower(names(dictionary_ppmi))


Set itm_name to lowercase and find used variables in the Dictionary to check for significance

require(dplyr)

dictionary_ppmi$itm_name <- tolower(dictionary_ppmi$itm_name)
vars_ppmi <- dictionary_ppmi[dictionary_ppmi$itm_name %in% names(ppmi),c(1,2,4,5,6)]
vars_ppmi <- vars_ppmi[!(duplicated(vars_ppmi[,2])),]
names_ppmi <- data.frame(idVar=1:NCOL(ppmi),itm_name=names(ppmi))
vars_ppmi <- arrange(merge(names_ppmi,vars_ppmi,all.x = T),idVar)
vars_ppmi$itm_name <- as.character(vars_ppmi$itm_name)


Define derived variables

require(dplyr)
# Semantic Fluency
ppmi$sft <- ppmi$vltanim + ppmi$vltveg + ppmi$vltfruit
vars_ppmi <- rbind(vars_ppmi,data.frame(itm_name=names(ppmi)[NCOL(ppmi)],idVar=max(vars_ppmi$idVar)+1,mod_name="DERIVED",dscr="semantic fluency",itm_type=NA,fld_len=NA))

# QUIP
ppmi$quip <- ifelse(rowSums(ppmi[,14:15],na.rm = T)>0,1,0) + ifelse(rowSums(ppmi[,16:17],na.rm = T)>0,1,0) + ifelse(rowSums(ppmi[,18:19],na.rm = T)>0,1,0) + ifelse(rowSums(ppmi[,20:21],na.rm = T)>0,1,0) + ppmi$tmtoract + ppmi$tmtmtact + ppmi$tmtrwd
vars_ppmi <- rbind(vars_ppmi,data.frame(itm_name=names(ppmi)[NCOL(ppmi)],idVar=max(vars_ppmi$idVar)+1,mod_name="DERIVED",dscr="questionnaire for impulsive-compulsive disorders",itm_type=NA,fld_len=NA))

# Family History
ppmi$famhx <- ifelse(rowSums(ppmi[,seq(29,45,2)],na.rm = T)>0,1,0)
vars_ppmi <- rbind(vars_ppmi,data.frame(itm_name=names(ppmi)[NCOL(ppmi)],idVar=max(vars_ppmi$idVar)+1,mod_name="DERIVED",dscr="family history",itm_type=NA,fld_len=NA))

# STAI sub and total score
ppmi$staistsub <- rowSums(cbind(ppmi[,58+c(3,4,6,7,9,12,13,14,17,18)], (5-(ppmi[,58+c(1,2,5,8,10,11,15,16,19,20)]))),na.rm = T)
vars_ppmi <- rbind(vars_ppmi,data.frame(itm_name=names(ppmi)[NCOL(ppmi)],idVar=max(vars_ppmi$idVar)+1,mod_name="DERIVED",dscr="STAI - state subscore",itm_type=NA,fld_len=NA))

ppmi$staitrsub <- rowSums(cbind(ppmi[,58+c(22,24,25,28,29,31,32,35,37,38,40)], (5-(ppmi[,58+c(21,23,26,27,30,33,34,36,39)]))),na.rm = T)
vars_ppmi <- rbind(vars_ppmi,data.frame(itm_name=names(ppmi)[NCOL(ppmi)],idVar=max(vars_ppmi$idVar)+1,mod_name="DERIVED",dscr="STAI - trait subscore",itm_type=NA,fld_len=NA))

ppmi$stai <- ppmi$staistsub + ppmi$staitrsub
vars_ppmi <- rbind(vars_ppmi,data.frame(itm_name=names(ppmi)[NCOL(ppmi)],idVar=max(vars_ppmi$idVar)+1,mod_name="DERIVED",dscr="state trait anxiety total score",itm_type=NA,fld_len=NA))

# REM Sleep Disorder
ppmi$rbd <- ifelse(rowSums(ppmi[,c(114:122)],na.rm = T)>0,1,0) + rowSums(ppmi[,102:113])
vars_ppmi <- rbind(vars_ppmi,data.frame(itm_name=names(ppmi)[NCOL(ppmi)],idVar=max(vars_ppmi$idVar)+1,mod_name="DERIVED",dscr="REM sleep behavior disorder",itm_type=NA,fld_len=NA))

ppmi_bkp <- ppmi[,c(1:9,123,10:26,124,27:45,125,46:98,126:128,99:122,129)]
names(ppmi_bkp) <- gsub(" ", "_",names(ppmi_bkp))
names_ppmi_bkp <- data.frame(idVar=1:NCOL(ppmi_bkp),itm_name=names(ppmi_bkp))
vars_ppmi_bkp <- dictionary_ppmi[dictionary_ppmi$itm_name %in% names(ppmi_bkp),c(1,2,4,5,6)]
vars_ppmi_bkp <- vars_ppmi_bkp[!(duplicated(vars_ppmi_bkp[,2])),]
vars_ppmi_bkp <- arrange(merge(names_ppmi_bkp,vars_ppmi_bkp,all.x = T),idVar)
vars_ppmi_bkp$itm_name <- as.character(vars_ppmi_bkp$itm_name) 


We defined freezing variable as a score > 0 on freezing and impulsive disorder as a QUIP score > 1


Build final PPMI processed dataset (Removing: Source of information variables, QUIP, Famili History and STAI single values, Creating gambling, sex, buy, eat, impOther and med variables for QUIP subsection response)

ppmi <- cbind(ppmi_bkp[,1:13], data.frame(gambling=ifelse(rowSums(ppmi_bkp[,15:16],na.rm = T)>0,1,0), sex=ifelse(rowSums(ppmi_bkp[,17:18],na.rm = T)>0,1,0), buy=ifelse(rowSums(ppmi_bkp[,19:20],na.rm = T)>0,1,0), eat=ifelse(rowSums(ppmi_bkp[,21:22],na.rm = T)>0,1,0), impOther=ifelse(rowSums(ppmi_bkp[,23:25],na.rm = T)>0,1,0), med=ifelse(rowSums(ppmi_bkp[,26:27],na.rm = T)>0,1,0)), ppmi_bkp[,c(28:29,48:61,102:106,120:NCOL(ppmi_bkp))])

ppmi$gender <- ifelse(ppmi$gender>1,2,1)
ppmi$freezing <- ifelse(ppmi$np2frez>0,1,0)
ppmi$impulsive <- ifelse(ppmi$quip>0,1,0)

names(ppmi) <- gsub(" ", "_",names(ppmi))

vars_ppmi <- dictionary_ppmi[dictionary_ppmi$itm_name %in% names(ppmi),c(1,2,4,5,6)]
vars_ppmi <- vars_ppmi[!(duplicated(vars_ppmi[,2])),]
names_ppmi <- data.frame(idVar=1:NCOL(ppmi),itm_name=names(ppmi))
vars_ppmi <- arrange(merge(names_ppmi,vars_ppmi,all.x = T),idVar)
vars_ppmi$itm_name <- as.character(vars_ppmi$itm_name)

Descriptive Plots

Age, Disease duration plot


There is a positive correlation between Age, Disease Duration and MDS Score


As expected, Age and Disease duration are significantly correalted with MDS Score at multivariate Linear Regression

summary(lm(mds_updrs_total ~ age + log(disease_duration), ppmi[ppmi$disease_duration>0,]))
## 
## Call:
## lm(formula = mds_updrs_total ~ age + log(disease_duration), data = ppmi[ppmi$disease_duration > 
##     0, ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.523  -9.435  -0.880   7.934  41.171 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           15.69215    4.21521   3.723 0.000226 ***
## age                    0.22867    0.06659   3.434 0.000658 ***
## log(disease_duration)  1.58021    0.76732   2.059 0.040121 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12.81 on 390 degrees of freedom
## Multiple R-squared:  0.04238,    Adjusted R-squared:  0.03747 
## F-statistic: 8.631 on 2 and 390 DF,  p-value: 0.0002149


MDS Score vs Freezing Box Plot: patients with freezing (but not those with impulsive disorder) have significantly higher MDS score


Semantic Fluency Score plots: No differences in Freezing or Impulsive pateints in terms os SF score as well as no correlation are found between SF score and MDS score


The proportion of female patients affected by Freezing aas well as by Impulsive Disorder seems to be higher than males. No difference are found for Family History or Side affected at onset



No difference in mean Striatum, Caudate, Putamen or Symbol Digit Score


Median REM Sleep Behaviour Disorder seems higher (but not significantly) in freezing and impulsive disorder patients.