setwd("C:/Users/marcogeovanni/Desktop/Modern Guide To Econometrics/Chapter 3")
library("readstata13", lib.loc="~/R/win-library/3.2")
predictsp <- read.dta13("predictsp.dta")
predictsp2 <- predictsp[1:360,]
attach(predictsp2)
Reg1 <- lm(EXRET~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 + I3_2 + I12_1 + I12_2 + MB_2 + CS_1 + WINTER, data.frame(predictsp2))
Reg2 <- lm(EXRET~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 + I3_2 + I12_1 + I12_2 + CS_1 + WINTER, data.frame(predictsp2))
Reg3 <- lm(EXRET~ DY_1 + I3_1 + I3_2 + I12_1 + I12_2 + CS_1, data.frame(predictsp2))
Reg4 <- lm(EXRET~ DY_1 + INF_2 + I3_1 + I3_2 + I12_1 + I12_2 + CS_1 + WINTER, data.frame(predictsp2))
Reg5 <- lm(EXRET~ DY_1 + I12_1 + I12_2 + CS_1 + WINTER, data.frame(predictsp2))
library(stargazer)
## Warning: package 'stargazer' was built under R version 3.2.3
## 
## Please cite as:
##  Hlavac, Marek (2015). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2. http://CRAN.R-project.org/package=stargazer
stargazer(Reg1, Reg2, Reg3, Reg4, Reg5, type = "text",out="table1.txt")
## 
## ==========================================================================================================================================
##                                                                      Dependent variable:                                                  
##                     ----------------------------------------------------------------------------------------------------------------------
##                                                                             EXRET                                                         
##                               (1)                     (2)                     (3)                    (4)                     (5)          
## ------------------------------------------------------------------------------------------------------------------------------------------
## PE_1                        -11.971                 -15.769                                                                               
##                            (12.937)                (10.707)                                                                               
##                                                                                                                                           
## DY_1                        12.650                  10.282                 13.044***              16.621***               12.207***       
##                             (8.288)                 (6.942)                 (4.813)                (5.520)                 (4.688)        
##                                                                                                                                           
## INF_2                      -16.332**               -15.677**                                       -10.688                                
##                             (7.679)                 (7.569)                                        (7.014)                                
##                                                                                                                                           
## IP_2                        -5.978                  -6.858                                                                                
##                             (6.110)                 (5.869)                                                                               
##                                                                                                                                           
## I3_1                       26.869**                25.897**                27.353**                28.311**                               
##                            (12.451)                (12.299)                (12.116)                (12.239)                               
##                                                                                                                                           
## I3_2                       -22.292*                -22.307*                -25.231**               -23.229*                               
##                            (12.107)                (12.095)                (11.964)                (12.055)                               
##                                                                                                                                           
## I12_1                     -50.524***              -50.385***              -52.813***              -52.483***             -27.421***       
##                            (12.348)                (12.332)                (12.255)                (12.283)                (5.072)        
##                                                                                                                                           
## I12_2                      38.866***               39.759***               43.528***              40.625***               20.612***       
##                            (12.793)                (12.666)                (12.395)                (12.610)                (5.286)        
##                                                                                                                                           
## MB_2                        -4.396                                                                                                        
##                             (8.384)                                                                                                       
##                                                                                                                                           
## CS_1                        17.539                  15.831                 23.904***              22.251***               21.831***       
##                            (10.934)                (10.427)                 (8.471)                (8.479)                 (8.361)        
##                                                                                                                                           
## WINTER                       0.625                   0.642                                          0.616                   0.698         
##                             (0.441)                 (0.439)                                        (0.437)                 (0.428)        
##                                                                                                                                           
## Constant                     2.074                   3.119                  -1.318                 -2.181**                -1.556         
##                             (4.023)                 (3.491)                 (0.938)                (1.023)                 (0.960)        
##                                                                                                                                           
## ------------------------------------------------------------------------------------------------------------------------------------------
## Observations                  360                     360                     360                    360                     360          
## R2                           0.170                   0.169                   0.150                  0.162                   0.144         
## Adjusted R2                  0.144                   0.145                   0.136                  0.143                   0.132         
## Residual Std. Error    4.022 (df = 348)        4.018 (df = 349)        4.039 (df = 353)        4.024 (df = 351)       4.048 (df = 354)    
## F Statistic         6.470*** (df = 11; 348) 7.104*** (df = 10; 349) 10.419*** (df = 6; 353) 8.470*** (df = 8; 351) 11.930*** (df = 5; 354)
## ==========================================================================================================================================
## Note:                                                                                                          *p<0.1; **p<0.05; ***p<0.01
BIC(Reg1, Reg2, Reg3, Reg4, Reg5)
##      df      BIC
## Reg1 13 2087.983
## Reg2 12 2082.381
## Reg3  8 2066.840
## Reg4 10 2073.765
## Reg5  7 2063.590
AIC(Reg1, Reg2, Reg3, Reg4, Reg5)
##      df      AIC
## Reg1 13 2037.464
## Reg2 12 2035.748
## Reg3  8 2035.752
## Reg4 10 2034.904
## Reg5  7 2036.388
predictsp3 <- predictsp[361:480,]
attach(predictsp3)
## The following objects are masked from predictsp2:
## 
##     CS_1, DY_1, EXRET, I12_1, I12_2, I3_1, I3_2, INF_2, IP_2,
##     MB_2, MONTH, PE_1, TS_1, WINTER, YEAR
HH <-predict(Reg1, predictsp3)
plot(EXRET)
lines(HH, col="Red")
HH2 <-predict(Reg2, predictsp3)
HH3 <-predict(Reg3, predictsp3)
HH4 <-predict(Reg4, predictsp3)
HH5 <-predict(Reg5, predictsp3)
lines(HH2, col="Blue")
lines(HH3, col="Green")
lines(HH4, col="Purple")
lines(HH5, col="Orange")

library("Metrics", lib.loc="~/R/win-library/3.2")
## Warning: package 'Metrics' was built under R version 3.2.3
RMSE <- rmse(EXRET,HH)
RMSE2 <- rmse(EXRET,HH2)
RMSE3 <- rmse(EXRET,HH3)
RMSE4 <- rmse(EXRET,HH4)
RMSE5 <- rmse(EXRET,HH5)
RMSEMatrix <- data.frame(RMSE, RMSE2, RMSE3, RMSE4, RMSE5)
list(RMSEMatrix)
## [[1]]
##       RMSE    RMSE2    RMSE3    RMSE4    RMSE5
## 1 4.833189 4.936203 4.842054 4.884346 4.753744
Corr1 <- cor(HH,EXRET)^2
Corr2 <- cor(HH2,EXRET)^2
Corr3 <- cor(HH3,EXRET)^2
Corr4 <- cor(HH4,EXRET)^2
Corr5 <- cor(HH5,EXRET)^2
CorrMatrix <- data.frame(Corr1, Corr2, Corr3, Corr4, Corr5)
list(CorrMatrix)
## [[1]]
##         Corr1      Corr2        Corr3       Corr4        Corr5
## 1 0.009350991 0.01046108 0.0003380942 0.000314682 0.0005724199