Load data.
## Source: local data frame [4 x 2]
##
## training_condition n()
## (chr) (int)
## 1 active_active 48
## 2 active_passive 44
## 3 passive_active 50
## 4 passive_passive 45
## Source: local data frame [4 x 3]
##
## training_condition m_train_time m_exp_time
## (chr) (dbl) (dbl)
## 1 active_active 0.6523878 4.718435
## 2 active_passive 0.7422754 4.329580
## 3 passive_active 0.5518863 4.333936
## 4 passive_passive 0.6128059 4.380295
How do we define chance performance on the entity test? Chance level changes for each question:
Median split on training time for active learning
Plot
Dotplot
Model
##
## Call:
## lm(formula = tot_diff_score ~ training_condition, data = ss)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.252435 -0.063229 -0.002435 0.068994 0.277778
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.036458 0.013803 2.641 0.00897 **
## training_conditionactive_passive -0.034023 0.019959 -1.705 0.08995 .
## training_conditionpassive_active -0.017887 0.019324 -0.926 0.35586
## training_conditionpassive_passive 0.007192 0.019843 0.362 0.71742
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09563 on 183 degrees of freedom
## Multiple R-squared: 0.02698, Adjusted R-squared: 0.01102
## F-statistic: 1.691 on 3 and 183 DF, p-value: 0.1705
Plot
Dotplot
Model