1. How many patients have repeat fistulogram in the follow up period?

count any patient who had multiple rows in the dataset

## [1] 0.508

count only those who had repeated fistulogram in the same lesion

## [1] 0.218

2. How many patients developed new lesions in the subsequent fistulogram?

## [1] 0.258

3. The distribution of lesions in each type of fistula (locationoffistula)

##                     
## locationofthefistula l2 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14
##                    1 21  6  0 14 10  0  4   0   0   4   0   0
##                    2 28 10 64 25  9  2 19   2   3   0   0  56
##                    3 18 12  0 17  5  2 13   0   1   0   0  23

4. Angioplasty survival for each lesion:

## Call: survfit(formula = Surv(surv.days, as.numeric(event)) ~ lesion.group, 
##     data = subset(dat.surv.lesion, !is.na(lesion.group)))
## 
##                 lesion.group=l12l13l14 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     5     39       1    0.974  0.0253        0.926        1.000
##    41     37       2    0.922  0.0434        0.840        1.000
##    54     35       1    0.895  0.0495        0.803        0.998
##    66     34       1    0.869  0.0546        0.768        0.983
##    75     33       1    0.843  0.0590        0.735        0.967
##    84     32       1    0.816  0.0627        0.702        0.949
##    89     31       2    0.764  0.0689        0.640        0.911
##    91     29       1    0.737  0.0713        0.610        0.891
##    98     28       1    0.711  0.0735        0.581        0.871
##   100     27       1    0.685  0.0753        0.552        0.849
##   105     26       1    0.658  0.0769        0.524        0.828
##   111     25       1    0.632  0.0782        0.496        0.806
##   112     24       2    0.579  0.0801        0.442        0.760
##   138     22       1    0.553  0.0806        0.416        0.736
##   182     21       1    0.527  0.0810        0.390        0.712
##   187     20       1    0.500  0.0811        0.364        0.687
##   195     19       1    0.474  0.0810        0.339        0.663
##   205     18       1    0.448  0.0807        0.314        0.637
##   215     16       1    0.420  0.0803        0.288        0.611
##   235     13       1    0.387  0.0804        0.258        0.582
##   272     11       1    0.352  0.0804        0.225        0.551
##   436      6       1    0.293  0.0858        0.165        0.521
## 
##                 lesion.group=l2l4 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     6     61       1    0.984  0.0163        0.952        1.000
##     8     60       1    0.967  0.0228        0.924        1.000
##    15     59       1    0.951  0.0277        0.898        1.000
##    72     58       2    0.918  0.0351        0.852        0.990
##    75     56       1    0.902  0.0381        0.830        0.980
##    91     55       1    0.885  0.0408        0.809        0.969
##    93     54       1    0.869  0.0432        0.788        0.958
##    94     53       1    0.852  0.0454        0.768        0.946
##    98     51       1    0.836  0.0475        0.748        0.934
##    99     50       1    0.819  0.0494        0.728        0.922
##   105     49       1    0.802  0.0511        0.708        0.909
##   112     48       1    0.786  0.0527        0.689        0.896
##   154     47       1    0.769  0.0542        0.670        0.883
##   178     44       1    0.751  0.0557        0.650        0.869
##   182     43       1    0.734  0.0571        0.630        0.855
##   213     38       1    0.715  0.0588        0.608        0.840
##   255     35       1    0.694  0.0605        0.585        0.824
## 
##                 lesion.group=l5 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##     2     38       1    0.974  0.0260        0.924        1.000
##    28     37       1    0.947  0.0362        0.879        1.000
##    36     36       1    0.921  0.0437        0.839        1.000
##    41     35       2    0.868  0.0548        0.767        0.983
##    54     33       1    0.842  0.0592        0.734        0.966
##    70     32       1    0.816  0.0629        0.701        0.949
##    75     31       1    0.789  0.0661        0.670        0.930
##    76     30       1    0.763  0.0690        0.639        0.911
##    89     29       1    0.737  0.0714        0.609        0.891
##    94     28       1    0.711  0.0736        0.580        0.870
##   111     27       1    0.684  0.0754        0.551        0.849
##   112     26       1    0.658  0.0770        0.523        0.827
##   168     24       1    0.630  0.0785        0.494        0.805
##   216     21       1    0.600  0.0803        0.462        0.780
##   267     18       1    0.567  0.0825        0.426        0.754
##   322     17       1    0.534  0.0841        0.392        0.727
## 
##                 lesion.group=l6l7l8 
##  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##    15     35       1    0.971  0.0282        0.918        1.000
##    43     34       2    0.914  0.0473        0.826        1.000
##    54     32       1    0.886  0.0538        0.786        0.998
##    70     31       1    0.857  0.0591        0.749        0.981
##    85     30       1    0.829  0.0637        0.713        0.963
##    98     29       2    0.771  0.0710        0.644        0.924
##   100     27       1    0.743  0.0739        0.611        0.903
##   105     26       1    0.714  0.0764        0.579        0.881
##   114     25       1    0.686  0.0785        0.548        0.858
##   123     24       1    0.657  0.0802        0.517        0.835
##   170     21       1    0.626  0.0823        0.484        0.810
##   192     20       1    0.595  0.0839        0.451        0.784
##   197     19       1    0.563  0.0851        0.419        0.757
##   201     18       1    0.532  0.0860        0.388        0.730
##   252     13       2    0.450  0.0901        0.304        0.666

## Call:
## coxph(formula = Surv(surv.days, as.numeric(event)) ~ lesion.group, 
##     data = subset(dat.surv.lesion, !is.na(lesion.group)))
## 
##   n= 173, number of events= 78 
## 
##                       coef exp(coef) se(coef)      z Pr(>|z|)   
## lesion.groupl2l4   -0.9994    0.3681   0.3098 -3.226  0.00126 **
## lesion.groupl5     -0.4522    0.6363   0.3150 -1.436  0.15112   
## lesion.groupl6l7l8 -0.3023    0.7391   0.3093 -0.977  0.32838   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                    exp(coef) exp(-coef) lower .95 upper .95
## lesion.groupl2l4      0.3681      2.717    0.2006    0.6756
## lesion.groupl5        0.6363      1.572    0.3432    1.1796
## lesion.groupl6l7l8    0.7391      1.353    0.4031    1.3551
## 
## Concordance= 0.592  (se = 0.033 )
## Rsquare= 0.063   (max possible= 0.987 )
## Likelihood ratio test= 11.24  on 3 df,   p=0.0105
## Wald test            = 10.63  on 3 df,   p=0.01391
## Score (logrank) test = 11.25  on 3 df,   p=0.01046

5. The distribution of number of lesions in each fistulogram

## rowSums(dat[, 15:26] == "Y")
##   0   1   2   3   4 
##   8 161  77  15   2