Lab PI?
pie(table(dr$pi), cex = .7)
Chance of contributing data.
pie(table(dr$contribution_prob), cex = .7)
Expected number of babies.
pie(table(dr$num_infants), cex = .7)
Aggregate data.
ms <- d %>%
group_by(study) %>%
summarise(MB1 = sum(interest == "MB1"),
MB2 = sum(interest == "MB2"),
able = sum(ability == "Yes"),
maybe_able = sum(ability == "Maybe")) %>%
gather(measure, sum, MB1, MB2, able, maybe_able) %>%
mutate(category = ifelse(measure == "able" | measure == "maybe_able",
"ability", "interest"))
Plot for ManyBabies 1 study preference.
ms$study <- factor(ms$study, levels = unique(ms$study)[sort(ms$sum[ms$measure=="MB1"], decreasing = TRUE, index.return = TRUE)$ix])
ggplot(filter(ms, category == "interest" & measure == "MB1"),
aes(x = study, y = sum)) +
geom_bar(stat="identity", position = "dodge") +
theme(axis.text.x = element_text(angle = 90, vjust = .5, hjust = 1)) +
scale_fill_solarized()
ManyBabies 2 study preference.
ms$study <- factor(ms$study, levels = unique(ms$study)[sort(ms$sum[ms$measure=="MB2"], decreasing = TRUE, index.return = TRUE)$ix])
ggplot(filter(ms, category == "interest" & measure == "MB2"),
aes(x = study, y = sum)) +
geom_bar(stat="identity", position = "dodge") +
theme(axis.text.x = element_text(angle = 90, vjust = .5, hjust = 1)) +
scale_fill_solarized()
And ability to do the studies.
ms$study <- factor(ms$study, levels = unique(ms$study)[sort(ms$sum[ms$category=="ability"], decreasing = TRUE, index.return = TRUE)$ix])
ggplot(filter(ms, category == "ability"),
aes(x = study, y = sum, fill = measure)) +
geom_bar(stat="identity") +
theme(axis.text.x = element_text(angle = 90, vjust = .5, hjust = 1)) +
scale_fill_solarized()