Roman Popat - The Data Lab
20/01/2016
| rmnppt.com | @rmnppt | rmnppt |
stats::stl()R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning (1990)
STL: A Seasonal-Trend Decomposition Procedure Based on Loess.
Journal of Official Statistics, 6, 3–73.
head(dat)
Source: local data frame [6 x 4]
Groups: year, month [1]
year month subcategory price
(int) (fctr) (fctr) (dbl)
1 2004 Jan Alstromeria 0.93
2 2004 Jan Anemones 0.39
3 2004 Jan Asian Lillies 1.07
4 2004 Jan Asparagus NA
5 2004 Jan Aubergine NA
6 2004 Jan Beetroot 0.25
length(unique(dat$subcategory))
[1] 65
carrots <- subset(dat, subcategory == "Carrots")
carrots$filled_price <- na.approx(carrots$price, rule = 2)
carrot_ts <- ts(carrots$filled_price, frequency = 12)
carrot_stl <- stl(carrot_ts,
s.window = 12,
s.degree = 1,
t.window = 21,
t.degree = 1)
carrot_stl
Call:
stl(x = carrot_ts, s.window = 12, s.degree = 1, t.window = 21,
t.degree = 1)
Components
seasonal trend remainder
Jan 1 -0.0136648682 0.2138007 9.864150e-03
Feb 1 -0.0253784900 0.2140527 2.132580e-02
Mar 1 -0.0132616996 0.2143047 8.957035e-03
Apr 1 0.0122652680 0.2145566 -2.348857e-02
May 1 -0.0020293263 0.2152978 3.398186e-03
Jun 1 0.0145500489 0.2160390 2.274431e-02
Jul 1 0.0251254185 0.2167801 -1.857223e-02
Aug 1 0.0246937249 0.2177984 -2.915880e-02
Sep 1 0.0041390008 0.2188167 -2.295566e-02
Oct 1 -0.0030664950 0.2198349 -2.010176e-02
Nov 1 -0.0188278615 0.2230027 5.825121e-03
Dec 1 -0.0175334120 0.2261706 1.362853e-03
Jan 2 -0.0162836505 0.2293384 -3.054726e-03
Feb 2 -0.0253923321 0.2346426 -9.250249e-03
Mar 2 -0.0141239369 0.2399468 -1.248952e-02
Apr 2 0.0140269644 0.2452510 4.738871e-02
May 2 0.0173242332 0.2495410 -1.686525e-02
Jun 2 0.0321681895 0.2538310 -1.266589e-02
Jul 2 0.0278456689 0.2581211 1.069994e-02
Aug 2 0.0184124101 0.2599796 1.494128e-02
Sep 2 -0.0038985589 0.2618382 1.539366e-02
Oct 2 -0.0134009015 0.2636968 1.303741e-02
Nov 2 -0.0273325942 0.2643431 2.989465e-03
Dec 2 -0.0218943689 0.2649894 1.023827e-02
Jan 3 -0.0189654407 0.2656357 -3.336969e-03
Feb 3 -0.0254619263 0.2672029 -1.174098e-02
Mar 3 -0.0150346704 0.2687701 9.597937e-03
Apr 3 0.0157560471 0.2703372 -2.609328e-02
May 3 0.0366610612 0.2726328 -3.596055e-02
Jun 3 0.0497898680 0.2749284 -2.471828e-02
Jul 3 0.0305897264 0.2772240 1.218627e-02
Aug 3 0.0121743565 0.2805821 2.057684e-02
Sep 3 -0.0118734033 0.2839403 1.793312e-02
Oct 3 -0.0236623043 0.2872984 9.697217e-03
Nov 3 -0.0357540349 0.2914005 -2.313143e-03
Dec 3 -0.0261739608 0.2955026 6.713601e-04
Jan 4 -0.0212664712 0.2996047 -1.671553e-03
Feb 4 -0.0254130870 0.3031483 -4.401902e-03
Mar 4 -0.0163870356 0.3066920 -1.030492e-02
Apr 4 0.0160440723 0.3102356 -1.294632e-02
May 4 0.0530105291 0.3129291 7.393699e-03
Jun 4 0.0675585145 0.3156226 -1.651447e-02
Jul 4 0.0343769639 0.3183161 1.064022e-02
Aug 4 0.0070161539 0.3193043 2.034619e-02
Sep 4 -0.0185502682 0.3202925 2.492444e-02
Oct 4 -0.0332046219 0.3212807 2.192396e-02
Nov 4 -0.0435143168 0.3231947 3.196223e-04
Dec 4 -0.0303088886 0.3251087 -4.799835e-03
Jan 5 -0.0237678975 0.3270228 3.411811e-03
Feb 5 -0.0255343788 0.3285616 -1.302726e-02
Mar 5 -0.0178792671 0.3301005 -3.888793e-02
Apr 5 0.0162543624 0.3316394 -6.456045e-02
May 5 0.0693443930 0.3328568 -8.867875e-03
Jun 5 0.0853976804 0.3340742 6.719478e-02
Jul 5 0.0383208438 0.3352916 3.305422e-02
Aug 5 0.0021034513 0.3413971 1.983275e-02
Sep 5 -0.0248927755 0.3475027 -9.276544e-03
Oct 5 -0.0423457019 0.3536082 -1.459581e-02
Nov 5 -0.0508064812 0.3566438 -1.917066e-02
Dec 5 -0.0339447650 0.3596794 -4.240134e-02
Jan 6 -0.0261472386 0.3627151 -4.323450e-02
Feb 6 -0.0254676591 0.3595743 -4.106680e-03
Mar 6 -0.0202603724 0.3564336 6.049343e-02
Apr 6 0.0130160506 0.3532929 1.203577e-01
May 6 0.0796492109 0.3512087 1.491420e-01
Jun 6 0.1022690378 0.3491246 -3.806031e-02
Jul 6 0.0427206326 0.3470405 -6.976110e-02
Aug 6 -0.0016663503 0.3420604 -7.039400e-02
Sep 6 -0.0286099002 0.3370802 -5.513701e-02
Oct 6 -0.0486609321 0.3321001 -1.593919e-02
Nov 6 -0.0546788401 0.3276167 8.728806e-03
Dec 6 -0.0371084899 0.3231333 9.808546e-03
Jan 7 -0.0288552516 0.3186499 2.020540e-02
Feb 7 -0.0256868908 0.3198408 5.846075e-03
Mar 7 -0.0228847085 0.3210318 -1.814707e-02
Apr 7 0.0096804144 0.3222227 1.809684e-02
May 7 0.0900026107 0.3255253 -5.527874e-03
Jun 7 0.1194245671 0.3288278 -8.252352e-03
Jul 7 0.0476401832 0.3321303 -1.977049e-02
Aug 7 -0.0046530220 0.3377337 -2.308067e-02
Sep 7 -0.0312805269 0.3433371 -2.205655e-02
Oct 7 -0.0537187759 0.3489405 -3.522169e-02
Nov 7 -0.0570829243 0.3519496 -3.486664e-02
Dec 7 -0.0387002609 0.3549587 4.374160e-02
Jan 8 -0.0307398753 0.3579678 5.277211e-02
Feb 8 -0.0271966534 0.3573124 5.988427e-02
Mar 8 -0.0271057004 0.3566570 6.044871e-02
Apr 8 0.0033433628 0.3560016 3.065503e-02
May 8 0.0842320591 0.3513856 4.382293e-03
Jun 8 0.1196697093 0.3467697 -1.643940e-02
Jul 8 0.0507771438 0.3421537 -2.293087e-02
Aug 8 -0.0013812769 0.3372682 -2.588697e-02
Sep 8 -0.0241200246 0.3323828 -2.826275e-02
Oct 8 -0.0471388550 0.3274973 -2.035844e-02
Nov 8 -0.0502686290 0.3337159 -2.344725e-02
Dec 8 -0.0365598052 0.3399345 -4.337466e-02
Jan 9 -0.0338205714 0.3461530 -3.233248e-02
Feb 9 -0.0299234560 0.3578454 -2.792195e-02
Mar 9 -0.0325647001 0.3695378 -4.697307e-02
Apr 9 -0.0041350179 0.3812301 -7.709512e-02
May 9 0.0774168571 0.3918168 2.076638e-02
Jun 9 0.1190459047 0.4024034 1.385507e-01
Jul 9 0.0532208610 0.4129900 8.378912e-02
Aug 9 0.0013920944 0.4203421 4.826579e-02
Sep 9 -0.0172630264 0.4276942 9.568814e-03
Oct 9 -0.0407152730 0.4350463 -3.433104e-02
Nov 9 -0.0434635073 0.4348902 -1.142665e-02
Dec 9 -0.0343642691 0.4347340 -3.697343e-04
Jan 10 -0.0369298418 0.4345778 1.235199e-02
Feb 10 -0.0332467165 0.4290364 4.210326e-03
Mar 10 -0.0389912199 0.4234949 -4.503712e-03
Apr 10 -0.0134990222 0.4179535 1.554555e-02
May 10 0.0685167867 0.4105976 -9.114407e-03
Jun 10 0.1179129575 0.4032418 6.884527e-02
Jul 10 0.0567725639 0.3958859 2.734152e-02
Aug 10 0.0059255254 0.3852222 -1.114775e-02
Sep 10 -0.0087743525 0.3745585 4.215810e-03
Oct 10 -0.0329630261 0.3638949 -9.318292e-04
Nov 10 -0.0358721967 0.3505672 -4.695010e-03
Dec 10 -0.0323859704 0.3372396 -4.853587e-03
Jan 11 -0.0402993947 0.3239119 -1.361251e-02
Feb 11 -0.0368046738 0.3144573 2.347395e-03
Mar 11 -0.0456268509 0.3050026 2.062420e-02
Apr 11 -0.0230231530 0.2955480 -2.524866e-03
May 11 0.0595055745 0.2923197 -5.182524e-02
Jun 11 0.1167325895 0.2890913 -7.582390e-02
Jul 11 0.0603405671 0.2858630 -3.620353e-02
Aug 11 0.0105376955 0.2880095 -1.854720e-02
Sep 11 -0.0001445005 0.2901560 -1.154585e-05
Oct 11 -0.0250238223 0.2923026 1.272123e-02
Nov 11 -0.0280481505 0.3001245 7.923606e-03
Dec 11 -0.0301522884 0.3079465 -7.794211e-03
Jan 12 -0.0439143613 0.3157685 -1.854092e-03
Feb 12 -0.0408889835 0.3275099 -1.662093e-02
Mar 12 -0.0525558416 0.3392514 -1.669554e-02
Apr 12 -0.0330749584 0.3509928 2.082117e-03
May 12 0.0489623582 0.3634192 1.761846e-02
Jun 12 0.1133913319 0.3758455 -5.923685e-02
Jul 12 0.0638193115 0.3882719 -2.209117e-02
Aug 12 0.0161475388 0.4009421 1.291035e-02
Sep 12 0.0099335614 0.4136124 6.454085e-03
Oct 12 -0.0152016085 0.4262826 1.891901e-02
Nov 12 -0.0189365686 0.4393722 9.564334e-03
Dec 12 -0.0276530427 0.4524619 5.191173e-03
carrot_stl <- stl(carrot_ts, s.window = "periodic",
t.window = 21, t.degree = 0)
carrot_stl <- stl(carrot_ts, s.window = 12, s.degree = 1,
t.window = 21, t.degree = 1)
seasonal done
trend done
data = seasonal + trend + remainder
| place | item | seasonal | trend |
|---|---|---|---|
| 1 | Strawberries | 0.555 | 0.2436 |
| 2 | Narcissus-inc.Daffodils | 0.5115 | 0.3113 |
| 3 | Runner Beans | 0.5051 | 0.2903 |
| 4 | Spinach | 0.474 | 0.2301 |
| 5 | Parsnips | 0.47 | 0.3141 |
| 6 | Raspberries | 0.462 | 0.2125 |
| 7 | Cucumbers | 0.4425 | 0.299 |
| 8 | Celery | 0.4227 | 0.3922 |
| 9 | Carrots | 0.4062 | 0.4706 |
| 10 | Swede | 0.4042 | 0.4739 |
Pros
Cons
| rmnppt.com | @rmnppt | rmnppt |
Roman Popat