library(broom) # used to neatly pass model results (model chaining/iteration)
## Warning: package 'broom' was built under R version 3.2.3
library(forecast) #consider using plot.ly for interactive forecast
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Loading required package: timeDate
## This is forecast 6.2
library(plyr)
library(dummies)
## dummies-1.5.6 provided by Decision Patterns
library(nortest)
library(glmnet) # http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
## Loading required package: Matrix
## Loading required package: foreach
## Loaded glmnet 2.0-2
library(caret)
## Warning: package 'caret' was built under R version 3.2.3
## Loading required package: lattice
## Loading required package: ggplot2
library(Amelia) # missing value viz
## Warning: package 'Amelia' was built under R version 3.2.3
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.4, built: 2015-12-05)
## ## Copyright (C) 2005-2016 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
#
#
# 1.DATASET/QUESTIONS -> 2.FEATURES -> 3.ALGORITHM -> 4.EVALUATION (rinse/repeat)
#
#
sales <- read.csv("https://www.dropbox.com/s/yxgij2mtsou0lf0/mj-sales-transformed.csv?dl=1")
violations <- read.csv("https://www.dropbox.com/s/euwbe6mciu9oaw9/mj-violations-transformed.csv?dl=1")
applicants <- read.csv("https://www.dropbox.com/s/hw3ci1l8w55wwxw/all_applicants.csv?dl=1")
# for merging, match join column name
applicants$License_Number <- applicants$License.
# what's missing?
missmap(applicants, main = "Applicants: Missing values vs observed")

missmap(sales, main = "Sales: Missing values vs observed")

missmap(violations, main = "Violations: Missing values vs observed")

# format currency fields
# TODO some cells have () (negative) and -
sales$Total_Sales <- as.numeric(gsub("\\$","", gsub("\\,","", sales$Total_Sales)))
## Warning: NAs introduced by coercion
# TODO some cells have () (negative) and -
sales$Excise_Tax_Due <- as.numeric(gsub("\\$","", gsub("\\,","", sales$Excise_Tax_Due)))
## Warning: NAs introduced by coercion
# calculate a tax rate (not always 25%)
sales$tax_rate <- sales$Excise_Tax_Due / sales$Total_Sales
# use applicants and sum sales and violations
# to get: license_number | total_sales | total_violations
# TODO: Do I need to scale features?
# TODO no count??
# aggviolations <- aggregate(violations, by=list(violations$License_Number), FUN=count)
# then merge on license_number
# applicants_with_sales <- merge(applicants, aggsales, by="License_Number")
# use applicants and aggregate sales
sales_only <- sales[,c(2,4,5,8)]
aggsales <- aggregate(sales_only, by=list(sales_only$License_Number), FUN=sum)
# BUG BUG aggsales$License_Number not correct!
# why does the following line put join column in Group.1?
# aggsales[aggsales$Group.1==413287,]
# HACK *replacing* value in License_Number with Group.1
aggsales$License_Number <- aggsales$Group.1
# use applicants and aggregate sales and violations
aggviolations <- count(violations, c('License_Number'))
# NOTE: some businesses use same license to operate different business types (processor, retailer) with diff't tax treatment
# rename count frequency to something meaningful
names(aggviolations)[names(aggviolations)=='freq'] <- "violation_count"
# do a left join to merge aggregate sales and violations to license number
applicants <- merge(applicants, aggsales, by='License_Number', all.x=TRUE) #left join
applicants <- merge(applicants, aggviolations, by='License_Number', all.x=TRUE) #left join
# check the merge!
str(applicants) # Total_Sales and violation_count should be added
## 'data.frame': 5903 obs. of 35 variables:
## $ License_Number : int 51124 59974 59974 59978 59978 70201 70283 72437 74433 76458 ...
## $ X : int 89 2035 1494 1019 725 432 435 1084 1112 577 ...
## $ City : Factor w/ 314 levels " ",..: 272 254 254 201 201 272 249 249 75 272 ...
## $ City.1 : Factor w/ 331 levels "","ABERDEEN ",..: 1 260 260 264 264 1 300 254 261 1 ...
## $ County : Factor w/ 38 levels "","ADAMS","ASOTIN",..: 26 22 22 23 23 26 16 16 9 26 ...
## $ DateCreated : int NA 20150903 20150903 20150904 20150904 NA 20140101 20150806 20131221 NA ...
## $ DayPhone : num 2.53e+09 3.60e+09 3.60e+09 3.61e+09 3.61e+09 ...
## $ Email : Factor w/ 3264 levels "","100terabytes@gmail.com",..: 3218 685 685 3113 3113 2793 494 2395 2216 2782 ...
## $ License. : int 51124 59974 59974 59978 59978 70201 70283 72437 74433 76458 ...
## $ Mail.Suite.Rm : Factor w/ 88 levels ""," ",..: 1 2 2 2 2 1 2 2 2 1 ...
## $ MailAddress : Factor w/ 3302 levels "0714 NE 72ND AVE APT N59 ",..: 2477 1193 1193 116 116 2355 2765 2757 2293 2900 ...
## $ MailCity : Factor w/ 149 levels "","ABERDEEN ",..: 134 1 1 1 1 134 1 1 1 65 ...
## $ MailState : Factor w/ 3 levels "","CA","WA": 3 1 1 1 1 3 1 1 1 3 ...
## $ MailSuite.Rm : Factor w/ 18 levels ""," ",..: 2 1 1 1 1 2 1 1 1 2 ...
## $ MailZipCode : num 9.84e+08 NA NA NA NA ...
## $ NightPhone : num 2.53e+09 3.60e+09 3.60e+09 3.61e+09 3.61e+09 ...
## $ OwnerName : Factor w/ 3164 levels "","\"OH\" MCDONALD FARMS, LLC",..: 411 1399 1399 2970 2970 1781 2181 2144 2500 2601 ...
## $ PrivDesc : Factor w/ 6 levels "MARIJUANA PROCESSOR ",..: 6 2 1 3 1 6 5 5 5 6 ...
## $ PrivilegeStatus: Factor w/ 5 levels "0CTIVE (ISSUED)",..: 5 5 5 5 5 5 5 4 5 5 ...
## $ ReasonAction : Factor w/ 4 levels "APPROVED ",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ State : Factor w/ 2 levels " ","WA": 2 2 2 2 2 2 2 2 2 2 ...
## $ State.1 : Factor w/ 9 levels "","CA","FO","GA",..: 1 9 9 9 9 1 7 9 9 1 ...
## $ StatusDate : int 20151103 NA NA NA NA 20151021 NA NA NA 20151016 ...
## $ StreetAddress : Factor w/ 3953 levels " ",..: 3467 1535 1535 1633 1633 3264 2722 3866 2680 1651 ...
## $ Suite.Rm : Factor w/ 193 levels " ",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Tradename : Factor w/ 3379 levels "'OH' MCDONALD FARMS ",..: 424 1538 1538 3183 3183 1900 2316 393 448 2710 ...
## $ UBI : num 6.03e+15 6.04e+15 6.04e+15 6.03e+15 6.03e+15 ...
## $ ZipCode : num 9.84e+08 9.86e+08 9.86e+08 9.88e+08 9.88e+08 ...
## $ ZipCode.1 : num NA 9.86e+08 9.86e+08 9.86e+08 9.86e+08 ...
## $ type : Factor w/ 4 levels "medical","processor",..: 1 3 2 3 2 1 4 4 4 1 ...
## $ Group.1 : int NA NA NA NA NA NA NA 72437 NA NA ...
## $ Total_Sales : num NA NA NA NA NA ...
## $ Excise_Tax_Due : num NA NA NA NA NA ...
## $ tax_rate : num NA NA NA NA NA ...
## $ violation_count: int NA NA NA NA NA NA NA NA NA NA ...
# state missing values assumptions:
# sales - business has not made money or is not reporting, so setting NAs in Total_Sales, Excise_Tax_Due and tax_rate to 0
# violations - innocence assumed, so setting to 0
applicants$Total_Sales[is.na(applicants$Total_Sales)] <- 0
applicants$Excise_Tax_Due[is.na(applicants$Excise_Tax_Due)] <- 0
applicants$tax_rate[is.na(applicants$tax_rate)] <- 0
applicants$violation_count[is.na(applicants$violation_count)] <- 0
# look at the distribution to test for normality
# plot(density(applicants$Total_Sales)) # Error in plot.new() : figure margins too large
ad.test(applicants$Total_Sales)
##
## Anderson-Darling normality test
##
## data: applicants$Total_Sales
## A = 1763.3, p-value < 2.2e-16
cvm.test(applicants$Total_Sales)
## Warning in cvm.test(applicants$Total_Sales): p-value is smaller than
## 7.37e-10, cannot be computed more accurately
##
## Cramer-von Mises normality test
##
## data: applicants$Total_Sales
## W = 377.18, p-value = 7.37e-10
lillie.test(applicants$Total_Sales)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: applicants$Total_Sales
## D = 0.42591, p-value < 2.2e-16
pearson.test(applicants$Total_Sales)
##
## Pearson chi-square normality test
##
## data: applicants$Total_Sales
## P = 253360, p-value < 2.2e-16
# sf.test(applicants$Total_Sales) # sample size must be between 5 and 5000
# low p-values, so NOT normally distributed!
# tested with: ad.test(rnorm(100, mean = 5, sd = 3));runif(100, min = 2, max = 4)
# NOT TODO: try to stratify into normal distributions or (assuming non-normal distribution)
# try equivalent tools for non-normal distributions: http://www.isixsigma.com/tools-templates/normality/dealing-non-normal-data-strategies-and-tools/
kruskal.test(list(applicants$violation_count, applicants$Total_Sales))
##
## Kruskal-Wallis rank sum test
##
## data: list(applicants$violation_count, applicants$Total_Sales)
## Kruskal-Wallis chi-squared = 627.48, df = 1, p-value < 2.2e-16
kruskal.test(list(applicants$Total_Sales, applicants$violation_count)) #same!
##
## Kruskal-Wallis rank sum test
##
## data: list(applicants$Total_Sales, applicants$violation_count)
## Kruskal-Wallis chi-squared = 627.48, df = 1, p-value < 2.2e-16
# look at the violation_count distribution to test for normality
plot(density(applicants$violation_count))

# shapiro.test(applicants$violation_count) # limited to 5000!?
qqnorm(applicants$violation_count)
qqline(applicants$violation_count, col = 2)

ad.test(applicants$violation_count)
##
## Anderson-Darling normality test
##
## data: applicants$violation_count
## A = 1904.1, p-value < 2.2e-16
cvm.test(applicants$violation_count)
## Warning in cvm.test(applicants$violation_count): p-value is smaller than
## 7.37e-10, cannot be computed more accurately
##
## Cramer-von Mises normality test
##
## data: applicants$violation_count
## W = 413.15, p-value = 7.37e-10
lillie.test(applicants$violation_count)
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: applicants$violation_count
## D = 0.51373, p-value < 2.2e-16
pearson.test(applicants$violation_count)
##
## Pearson chi-square normality test
##
## data: applicants$violation_count
## P = 328860, p-value < 2.2e-16
# sf.test(applicants$violation_count) # limited to 5000!?
# look for anomalies in the data
summary(applicants$ReasonAction) # most applications PENDING, not APPROVED
## APPROVED DISCONTINUED PENDING WITHDRAWN
## 1215 1 4463 224
summary(applicants$State.1) # 13 out of WA state businesses
## CA FO GA ID KS OK OR WA
## 732 5 1 2 1 1 1 2 5158
summary(applicants$type) # PROCESSOR and RETAILER most prevalent
## medical processor producer retailer
## 732 1500 2043 1628
# TODO add dummy variables for Suspended/Cancelled/Destruction, since not all violations are severe
# - join applicants with violations and set dummy variable when violations$Penalty_Type %in%
# c('Suspension', 'Cancellation of License', 'Destruction of harvestable plants')
# add dummy variables for each business Type: Producer, Processor, Retailer, Medical
# type.dummies <- dummy('type', applicants, sep=":")
applicants <- dummy.data.frame(names='type', applicants, sep=":")
# TODO add variables for high-risk counties or cities
applicants$violator <- applicants$violation_count > 0
applicants$log_Total_Sales <- log(applicants$Total_Sales)
applicants$log_Excise_Tax_Due <- log(applicants$Excise_Tax_Due)
# is there a correlation between sales and violations? overall? in certain segments?
# overall
summary(lm(applicants$violation_count ~ applicants$Total_Sales)) # low R
##
## Call:
## lm(formula = applicants$violation_count ~ applicants$Total_Sales)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.0302 -0.1114 -0.1114 -0.1114 11.8886
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.114e-01 9.787e-03 11.38 <2e-16 ***
## applicants$Total_Sales 3.407e-07 1.265e-08 26.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7392 on 5901 degrees of freedom
## Multiple R-squared: 0.1095, Adjusted R-squared: 0.1093
## F-statistic: 725.3 on 1 and 5901 DF, p-value: < 2.2e-16
summary(glm(applicants$violation_count ~ applicants$Total_Sales)) # ???
##
## Call:
## glm(formula = applicants$violation_count ~ applicants$Total_Sales)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -6.0302 -0.1114 -0.1114 -0.1114 11.8886
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.114e-01 9.787e-03 11.38 <2e-16 ***
## applicants$Total_Sales 3.407e-07 1.265e-08 26.93 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.5463647)
##
## Null deviance: 3620.4 on 5902 degrees of freedom
## Residual deviance: 3224.1 on 5901 degrees of freedom
## AIC: 13188
##
## Number of Fisher Scoring iterations: 2
# logit regression for predicting a violator
train <- applicants[1:4130,]
test <- applicants[4131:5903,]
model <- glm(violator ~ Total_Sales + Excise_Tax_Due + PrivDesc,family=binomial(link='logit'),data=train)
summary(model) # significant: sales, tax, retailer type
##
## Call:
## glm(formula = violator ~ Total_Sales + Excise_Tax_Due + PrivDesc,
## family = binomial(link = "logit"), data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -5.2359 -0.3677 -0.3198 -0.2606 2.5846
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -2.660e+00 1.246e-01 -21.348
## Total_Sales 2.541e-06 2.236e-07 11.364
## Excise_Tax_Due -5.345e-06 7.916e-07 -6.752
## PrivDescMARIJUANA PRODUCER TIER 1 3.831e-02 2.808e-01 0.136
## PrivDescMARIJUANA PRODUCER TIER 2 -1.305e-02 1.999e-01 -0.065
## PrivDescMARIJUANA PRODUCER TIER 3 -2.873e-01 2.104e-01 -1.365
## PrivDescMARIJUANA RETAILER -7.050e-01 1.856e-01 -3.799
## PrivDescMEDICAL MARIJUANA 4.712e-01 2.507e-01 1.880
## Pr(>|z|)
## (Intercept) < 2e-16 ***
## Total_Sales < 2e-16 ***
## Excise_Tax_Due 1.46e-11 ***
## PrivDescMARIJUANA PRODUCER TIER 1 0.891458
## PrivDescMARIJUANA PRODUCER TIER 2 0.947923
## PrivDescMARIJUANA PRODUCER TIER 3 0.172271
## PrivDescMARIJUANA RETAILER 0.000145 ***
## PrivDescMEDICAL MARIJUANA 0.060128 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2387.6 on 4129 degrees of freedom
## Residual deviance: 1901.4 on 4122 degrees of freedom
## AIC: 1917.4
##
## Number of Fisher Scoring iterations: 6
model <- glm(violator ~ Total_Sales + Excise_Tax_Due + ReasonAction,family=binomial(link='logit'),data=train)
summary(model) # significant: pending, withdrawn
##
## Call:
## glm(formula = violator ~ Total_Sales + Excise_Tax_Due + ReasonAction,
## family = binomial(link = "logit"), data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.1293 -0.2042 -0.1975 -0.1975 2.8095
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.635e+00 8.982e-02 -18.206 < 2e-16 ***
## Total_Sales 2.145e-06 1.913e-07 11.212 < 2e-16 ***
## Excise_Tax_Due -5.128e-06 6.395e-07 -8.019 1.07e-15 ***
## ReasonActionDISCONTINUED -1.094e+01 3.247e+02 -0.034 0.973
## ReasonActionPENDING -2.292e+00 1.517e-01 -15.109 < 2e-16 ***
## ReasonActionWITHDRAWN -1.931e+00 3.868e-01 -4.994 5.92e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2387.6 on 4129 degrees of freedom
## Residual deviance: 1661.5 on 4124 degrees of freedom
## AIC: 1673.5
##
## Number of Fisher Scoring iterations: 11
model <- glm(violator ~ Total_Sales + Excise_Tax_Due + PrivilegeStatus,family=binomial(link='logit'),data=train)
summary(model) # slightly significant: issued
##
## Call:
## glm(formula = violator ~ Total_Sales + Excise_Tax_Due + PrivilegeStatus,
## family = binomial(link = "logit"), data = train)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.07826 -0.00005 -0.00005 -0.00005 1.83269
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.248e-01 2.212e-01 -3.728 0.000193
## Total_Sales 1.224e-06 1.741e-07 7.030 2.07e-12
## Excise_Tax_Due -2.892e-06 5.923e-07 -4.882 1.05e-06
## PrivilegeStatusACTIVE (ISSUED) -6.482e-01 2.287e-01 -2.834 0.004593
## PrivilegeStatusCLOSED (PERMANENT) -1.974e+01 1.311e+03 -0.015 0.987983
## PrivilegeStatusPENDING (ISSUED) -4.212e-01 2.740e-01 -1.537 0.124187
## PrivilegeStatusPENDING (NOT ISSUED) -1.974e+01 3.420e+02 -0.058 0.953965
##
## (Intercept) ***
## Total_Sales ***
## Excise_Tax_Due ***
## PrivilegeStatusACTIVE (ISSUED) **
## PrivilegeStatusCLOSED (PERMANENT)
## PrivilegeStatusPENDING (ISSUED)
## PrivilegeStatusPENDING (NOT ISSUED)
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2387.6 on 4129 degrees of freedom
## Residual deviance: 1350.6 on 4123 degrees of freedom
## AIC: 1364.6
##
## Number of Fisher Scoring iterations: 19
# **** export data to work in Python/sklearn *****
write.csv(applicants, "applicants_transformed.csv")
write.csv(aggsales, "sales_by_license.csv")
write.csv(aggviolations, "violations_by_license.csv")
# use inference() and t-test to infer risk/sales growth from larger population of similar businesses?
# load(url("http://assets.datacamp.com/course/dasi/inference.Rdata"))
#inference()
#tt=t.test()