Question 1

numbers <- (1:50)

for(i in 1:50) {
  
 results.i <- i
 numbers[i] <- results.i
  
}

print(numbers)
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
## [24] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
## [47] 47 48 49 50

Question 2 A

current.sum <- 0

for(i in (0:1000)) {
  
  current.sum <- current.sum + i 
  
}

print(current.sum)
## [1] 500500

Question 2 B

current.sum <- 0 

for(i in seq(0, 1000, by = 2)) {
  
  current.sum <- current.sum + i 
  
  
}

print(current.sum)
## [1] 250500

Question 2 C

sum(seq(0, 1000))
## [1] 500500
sum(seq(0, 1000, by = 2))
## [1] 250500

Question 3 A

survey.clean <- data.frame(
                     "participant" = c(1, 2, 3, 4, 5, 6),
                     "q1" = c(5, 3, 2, 7, 11, 0),
                     "q2" = c(4, 2, 2, 5, -10, 99),
                     "q3" = c(-4, -3, 4, 2, 9, 10),
                     "q4" = c(-30, 5, 2, 23, 4, 2),
                     "q5" = c(88, 4, -20, 2, 4, 2)
                     )

for (i in c(2:6)) {
  
  y <- survey.clean[, i]
  
  y[(y %in% c(1:5)) == F] <- NA
  
  survey.clean[, i] <- y
  
}

print(survey.clean)
##   participant q1 q2 q3 q4 q5
## 1           1  5  4 NA NA NA
## 2           2  3  2 NA  5  4
## 3           3  2  2  4  2 NA
## 4           4 NA  5  2 NA  2
## 5           5 NA NA NA  4  4
## 6           6 NA NA NA  2  2

Question 3 B

survey.clean$invalid.answers <- rep(NA, 6)

questions.i <- grep("^q", names(survey.clean))

for(i in (1:6) ) {
  
  part.i <- survey.clean[i, questions.i ]
  
  na.values <- sum(is.na(part.i))
  
  survey.clean$invalid.answers[i] <- na.values
  
  
  
}

survey.clean
##   participant q1 q2 q3 q4 q5 invalid.answers
## 1           1  5  4 NA NA NA               3
## 2           2  3  2 NA  5  4               1
## 3           3  2  2  4  2 NA               1
## 4           4 NA  5  2 NA  2               2
## 5           5 NA NA NA  4  4               3
## 6           6 NA NA NA  2  2               3

Question 4

pirates <- read.table("http://nathanieldphillips.com/wp-content/uploads/2016/01/pirates.txt", 
                      sep = "\t", header = T, stringsAsFactors = F)

standardize.me <- function(x) {
  
  output <- (x - mean(x)) / sd(x)
  
  return(output)
  
}

head(pirates)
##   id    sex headband age college tattoos tchests parrots favorite.pirate
## 1  1 female      yes  30   JSSFP      11      20       7      Blackbeard
## 2  2   male      yes  25    CCCC      15       6       3        Anicetus
## 3  3   male      yes  25    CCCC      12       5       2    Jack Sparrow
## 4  4   male      yes  29   JSSFP      12       0       1      Edward Low
## 5  5 female      yes  31    CCCC      17      11      10        Anicetus
## 6  6   male      yes  30   JSSFP      12       2       2    Jack Sparrow
##   sword.type sword.time eyepatch beard.length       fav.pixar
## 1    cutlass       0.83        1            0              Up
## 2    cutlass       0.03        1           16     Toy Story 2
## 3    cutlass       1.44        0           21            Cars
## 4    cutlass       0.18        1           21 The Incredibles
## 5    cutlass       0.64        1            0      Inside Out
## 6      sabre      13.90        1           22      Inside Out
pirates.z <- data.frame(pirates$age, pirates$tattoos, pirates$tchests, pirates$parrots, pirates$sword.time, pirates$beard.length)

head(pirates.z)
##   pirates.age pirates.tattoos pirates.tchests pirates.parrots
## 1          30              11              20               7
## 2          25              15               6               3
## 3          25              12               5               2
## 4          29              12               0               1
## 5          31              17              11              10
## 6          30              12               2               2
##   pirates.sword.time pirates.beard.length
## 1               0.83                    0
## 2               0.03                   16
## 3               1.44                   21
## 4               0.18                   21
## 5               0.64                    0
## 6              13.90                   22
for(i in (1:6)) {
  
  pirates.z[, i ] <- standardize.me(pirates.z[, i])
  
    
}

head(pirates.z)
##   pirates.age pirates.tattoos pirates.tchests pirates.parrots
## 1   0.4705692       0.4837266       1.8316209       1.6147531
## 2  -0.4326347       1.6649880      -0.1670301       0.1411021
## 3  -0.4326347       0.7790419      -0.3097909      -0.2273107
## 4   0.2899284       0.7790419      -1.0235949      -0.5957234
## 5   0.6512100       2.2556187       0.5467738       2.7199914
## 6   0.4705692       0.7790419      -0.7380733      -0.2273107
##   pirates.sword.time pirates.beard.length
## 1        -0.16245384           -0.9591265
## 2        -0.25404809            0.6028098
## 3        -0.09261323            1.0909148
## 4        -0.23687417            1.0909148
## 5        -0.18420748           -0.9591265
## 6         1.33396715            1.1885359
#We predict a mean of zero and a standard deviation of 1.
  mean. <- NULL
  sd. <- NULL
  
for(i in (1:6)) {
  
  mean. <- c(mean., mean(pirates.z[, i]))
  sd. <- c(sd., sd(pirates.z[, i]))
}

print(mean.)
## [1]  9.581778e-17 -3.521380e-17 -1.107621e-18 -1.285316e-17  7.051105e-18
## [6]  7.438765e-17
print(sd.)
## [1] 1 1 1 1 1 1
#Yeeeah:)

Question 5

shipauction <- read.table("http://nathanieldphillips.com/wp-content/uploads/2016/01/auction.txt", 
                      sep = "\t", header = T, stringsAsFactors = F)


aggregate(price ~ cannons, data = shipauction, FUN = mean)
##    cannons     price
## 1        2  273.0686
## 2        4  226.6176
## 3        6  450.7007
## 4        8  566.2791
## 5       10  739.4052
## 6       12  832.2190
## 7       14 1022.2750
## 8       16 1254.7119
## 9       18 1426.8649
## 10      20 1423.1250

Question 6

par(mfrow = c(4, 4))

ship.condition <- unique(shipauction$condition)

for(condition.i in ship.condition) {
  
  data.temp <- subset(shipauction, condition == condition.i)
  
  hist(data.temp$price,
       main = condition.i,
       xlab = "price")
  
  meag <- mean(shipauction$price)
  abline(v = meag, col = "blue", lwd = 2)
}