Cfos in Cingulate Cortex
exp4CC <- read.csv("~/Desktop/experiment 4 cfos in cingulate cortex.csv")
exp4CC
## Activity.Level Wheel.Running.Activity Count
## 1 high 162.68 228
## 2 high 228.85 437
## 3 high 329.81 60
## 4 high 108.18 108
## 5 low 11.87 1
## 6 low 76.49 572
## 7 low 76.37 8
## 8 high 324.93 76
## 9 low 112.55 29
## 10 low 44.41 22
## 11 low 0.00 0
tapply(exp4CC$Count, exp4CC$Activity.Level, sd)
## high low
## 157.1 228.9
exp4CC$Activity.Level <- as.factor(exp4CC$Activity.Level)
exp4CC$Wheel.Running.Activity <- as.factor(exp4CC$Wheel.Running.Activity)
exp4CC$Count <- as.numeric(exp4CC$Count)
aov.exp4CC = aov(Count ~ Activity.Level, data = exp4CC)
summary(aov.exp4CC)
## Df Sum Sq Mean Sq F value Pr(>F)
## Activity.Level 1 15947 15947 0.4 0.54
## Residuals 9 360740 40082
exp4CC$Wheel.Running.Activity <- as.numeric(exp4CC$Wheel.Running.Activity)
aov.exp4CC = aov(Wheel.Running.Activity ~ Activity.Level, data = exp4CC)
summary(aov.exp4CC)
## Df Sum Sq Mean Sq F value Pr(>F)
## Activity.Level 1 71.9 71.9 17 0.0026 **
## Residuals 9 38.1 4.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
comparison <- aov(Wheel.Running.Activity ~ Activity.Level, data = exp4CC)
TukeyHSD(comparison, "Activity.Level")
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Wheel.Running.Activity ~ Activity.Level, data = exp4CC)
##
## $Activity.Level
## diff lwr upr p adj
## low-high -5.133 -7.953 -2.314 0.0026
print(model.tables(aov.exp4CC, "means"), digits = 11)
## Tables of means
## Grand mean
##
## 6
##
## Activity.Level
## high low
## 8.8 3.6666666667
## rep 5.0 6.0000000000