Cfos in Cingulate Cortex

exp4CC <- read.csv("~/Desktop/experiment 4 cfos in cingulate cortex.csv")
exp4CC
##    Activity.Level Wheel.Running.Activity Count
## 1            high                 162.68   228
## 2            high                 228.85   437
## 3            high                 329.81    60
## 4            high                 108.18   108
## 5             low                  11.87     1
## 6             low                  76.49   572
## 7             low                  76.37     8
## 8            high                 324.93    76
## 9             low                 112.55    29
## 10            low                  44.41    22
## 11            low                   0.00     0
tapply(exp4CC$Count, exp4CC$Activity.Level, sd)
##  high   low 
## 157.1 228.9
exp4CC$Activity.Level <- as.factor(exp4CC$Activity.Level)
exp4CC$Wheel.Running.Activity <- as.factor(exp4CC$Wheel.Running.Activity)
exp4CC$Count <- as.numeric(exp4CC$Count)
aov.exp4CC = aov(Count ~ Activity.Level, data = exp4CC)
summary(aov.exp4CC)
##                Df Sum Sq Mean Sq F value Pr(>F)
## Activity.Level  1  15947   15947     0.4   0.54
## Residuals       9 360740   40082

exp4CC$Wheel.Running.Activity <- as.numeric(exp4CC$Wheel.Running.Activity)
aov.exp4CC = aov(Wheel.Running.Activity ~ Activity.Level, data = exp4CC)
summary(aov.exp4CC)
##                Df Sum Sq Mean Sq F value Pr(>F)   
## Activity.Level  1   71.9    71.9      17 0.0026 **
## Residuals       9   38.1     4.2                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
comparison <- aov(Wheel.Running.Activity ~ Activity.Level, data = exp4CC)
TukeyHSD(comparison, "Activity.Level")
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Wheel.Running.Activity ~ Activity.Level, data = exp4CC)
## 
## $Activity.Level
##            diff    lwr    upr  p adj
## low-high -5.133 -7.953 -2.314 0.0026

print(model.tables(aov.exp4CC, "means"), digits = 11)
## Tables of means
## Grand mean
##   
## 6 
## 
##  Activity.Level 
##     high          low
##      8.8 3.6666666667
## rep  5.0 6.0000000000