## threshold specificity sensitivity
## 49.5000000 0.8846154 0.6153846
## threshold specificity sensitivity
## 59.2130300 1.0000000 0.6153846
##
## DeLong's test for two ROC curves
##
## data: mod2 and mod1
## D = 0.12005, df = 80.589, p-value = 0.9047
## alternative hypothesis: true difference in AUC is not equal to 0
## sample estimates:
## AUC of roc1 AUC of roc2
## 0.7717122 0.7544379
Compare with TTE, AUC increased from 0.75 to 0.77, p-value=0.9047.
## threshold.mif threshold.tte specificity sensitivity
## 60.24626 50 0.8846154 0.9230769
## threshold specificity sensitivity
## 0.1767037 0.7692308 0.9230769
##
## DeLong's test for two ROC curves
##
## data: mod3 and mod1
## D = 1.3588, df = 54.377, p-value = 0.1798
## alternative hypothesis: true difference in AUC is not equal to 0
## sample estimates:
## AUC of roc1 AUC of roc2
## 0.9082840 0.7544379
Compare with TTE, AUC increased from 0.75 to 0.91, p-value=0.1798.
MIF > 60 or TTE > 50## POPH
## pred.rule1 0 1
## FALSE 24 1
## TRUE 2 12
## specificity sensitivity
## 0.9230769 0.9230769
.4*MIF + .6*TTE > 50## POPH
## pred.rule2 0 1
## FALSE 24 5
## TRUE 2 8
## specificity sensitivity
## 0.9230769 0.6153846