getwd()
## [1] "C:/Users/dell/Desktop/Teaching"
rm(list=ls())
gc()
##          used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 293614  7.9     460000 12.3   350000  9.4
## Vcells 323050  2.5     786432  6.0   677529  5.2
sessionInfo()
## R version 3.2.2 (2015-08-14)
## Platform: i386-w64-mingw32/i386 (32-bit)
## Running under: Windows 7 (build 7601) Service Pack 1
## 
## locale:
## [1] LC_COLLATE=English_United States.1252 
## [2] LC_CTYPE=English_United States.1252   
## [3] LC_MONETARY=English_United States.1252
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.1252    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
## [1] magrittr_1.5  tools_3.2.2   htmltools_0.3 stringi_1.0-1 rmarkdown_0.7
## [6] knitr_1.10.5  stringr_1.0.0 digest_0.6.8  evaluate_0.7
memory.limit()
## [1] 1535
library(Rcmdr)
## Loading required package: splines
## Loading required package: RcmdrMisc
## Loading required package: car
## Loading required package: sandwich
## The Commander GUI is launched only in interactive sessions
library(RcmdrPlugin.epack)
## Loading required package: TeachingDemos
## Loading required package: tseries
## Loading required package: abind
## Loading required package: MASS
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Loading required package: forecast
## Loading required package: timeDate
## This is forecast 6.2
data(woolyrnq, package="forecast")
woolyrnq <- as.data.frame(woolyrnq)


a=ets(woolyrnq$x)
a
## ETS(M,N,A) 
## 
## Call:
##  ets(y = woolyrnq$x) 
## 
##   Smoothing parameters:
##     alpha = 0.9374 
##     gamma = 1e-04 
## 
##   Initial states:
##     l = 6765.8183 
##     s=27.5251 463.9382 128.9699 -620.4332
## 
##   sigma:  0.0748
## 
##      AIC     AICc      BIC 
## 2016.427 2017.177 2033.102
predict(a,10)
##         Point Forecast    Lo 80    Hi 80    Lo 95    Hi 95
## 1994 Q4       5962.242 5390.649 6533.835 5088.066 6836.418
## 1995 Q1       5314.252 4573.814 6054.690 4181.849 6446.654
## 1995 Q2       6063.343 5137.379 6989.307 4647.203 7479.482
## 1995 Q3       6398.296 5304.278 7492.314 4725.139 8071.452
## 1995 Q4       5962.242 4744.109 7180.375 4099.269 7825.215
## 1996 Q1       5314.252 4006.171 6622.332 3313.715 7314.788
## 1996 Q2       6063.343 4639.986 7486.699 3886.507 8240.179
## 1996 Q3       6398.296 4858.444 7938.148 4043.296 8753.296
## 1996 Q4       5962.242 4330.095 7594.389 3466.088 8458.396
## 1997 Q1       5314.252 3612.211 7016.292 2711.205 7917.298
str(predict(a,20))
## List of 9
##  $ model    :List of 18
##   ..$ loglik    : num -1002
##   ..$ aic       : num 2016
##   ..$ bic       : num 2033
##   ..$ aicc      : num 2017
##   ..$ mse       : num 195522
##   ..$ amse      : num 310159
##   ..$ fit       :List of 4
##   .. ..$ value  : num 2004
##   .. ..$ par    : num [1:6] 9.37e-01 1.00e-04 6.77e+03 2.75e+01 4.64e+02 ...
##   .. ..$ fail   : int 0
##   .. ..$ fncount: int 689
##   ..$ residuals : Time-Series [1:119] from 1965 to 1994: 0.00433 -0.03045 -0.0601 0.0702 0.13389 ...
##   ..$ fitted    : Time-Series [1:119] from 1965 to 1994: 6145 6920 7057 6223 5985 ...
##   ..$ states    : mts [1:120, 1:5] 6766 6791 6593 6196 6605 ...
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : NULL
##   .. .. ..$ : chr [1:5] "l" "s1" "s2" "s3" ...
##   .. ..- attr(*, "tsp")= num [1:3] 1965 1994 4
##   .. ..- attr(*, "class")= chr [1:3] "mts" "ts" "matrix"
##   ..$ par       : Named num [1:6] 9.37e-01 1.00e-04 6.77e+03 2.75e+01 4.64e+02 ...
##   .. ..- attr(*, "names")= chr [1:6] "alpha" "gamma" "l" "s0" ...
##   ..$ m         : num 4
##   ..$ method    : chr "ETS(M,N,A)"
##   ..$ components: chr [1:4] "M" "N" "A" "FALSE"
##   ..$ call      : language ets(y = woolyrnq$x)
##   ..$ initstate : Named num [1:5] 6765.8 27.5 463.9 129 -620.4
##   .. ..- attr(*, "names")= chr [1:5] "l" "s1" "s2" "s3" ...
##   ..$ sigma2    : num 0.0056
##   ..$ x         : Time-Series [1:119] from 1965 to 1994: 6172 6709 6633 6660 6786 ...
##   ..- attr(*, "class")= chr "ets"
##  $ mean     : Time-Series [1:20] from 1995 to 2000: 5962 5314 6063 6398 5962 ...
##  $ level    : num [1:2] 80 95
##  $ x        : Time-Series [1:119] from 1965 to 1994: 6172 6709 6633 6660 6786 ...
##  $ upper    : mts [1:20, 1:2] 6534 6055 6989 7492 7180 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : NULL
##   .. ..$ : chr [1:2] "Series 1" "Series 2"
##   ..- attr(*, "tsp")= num [1:3] 1995 2000 4
##   ..- attr(*, "class")= chr [1:3] "mts" "ts" "matrix"
##  $ lower    : mts [1:20, 1:2] 5391 4574 5137 5304 4744 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : NULL
##   .. ..$ : chr [1:2] "Series 1" "Series 2"
##   ..- attr(*, "tsp")= num [1:3] 1995 2000 4
##   ..- attr(*, "class")= chr [1:3] "mts" "ts" "matrix"
##  $ fitted   : Time-Series [1:119] from 1965 to 1994: 6145 6920 7057 6223 5985 ...
##  $ method   : chr "ETS(M,N,A)"
##  $ residuals: Time-Series [1:119] from 1965 to 1994: 0.00433 -0.03045 -0.0601 0.0702 0.13389 ...
##  - attr(*, "class")= chr "forecast"
b=auto.arima(woolyrnq$x)
b
## Series: woolyrnq$x 
## ARIMA(1,0,0)(0,1,1)[4]                    
## 
## Coefficients:
##          ar1     sma1
##       0.8077  -0.6669
## s.e.  0.0629   0.0944
## 
## sigma^2 estimated as 172819:  log likelihood=-858
## AIC=1722   AICc=1722.21   BIC=1730.23
predict(b,10)
## $pred
##          Qtr1     Qtr2     Qtr3     Qtr4
## 1994                            5798.859
## 1995 5046.575 5843.460 6132.798 5586.269
## 1996 4874.866 5704.769 6020.777 5495.789
## 1997 4801.785                           
## 
## $se
##          Qtr1     Qtr2     Qtr3     Qtr4
## 1994                            415.7154
## 1995 534.3820 599.2640 638.0458 711.7536
## 1996 755.9759 783.4817 800.9171 846.0810
## 1997 874.2886
newdataset=predar3(b,fore1=48)

bulkfit(woolyrnq$x)
## $res
##       ar d ma      AIC
##  [1,]  0 0  0 1994.256
##  [2,]  0 0  1 1918.450
##  [3,]  0 0  2 1878.005
##  [4,]  0 1  0 1875.308
##  [5,]  0 1  1 1860.141
##  [6,]  0 1  2 1842.926
##  [7,]  0 2  0 1950.905
##  [8,]  0 2  1 1867.198
##  [9,]  0 2  2 1853.993
## [10,]  1 0  0 1882.118
## [11,]  1 0  1 1882.007
## [12,]  1 0  2 1879.646
## [13,]  1 1  0 1876.419
## [14,]  1 1  1 1855.804
## [15,]  1 1  2 1844.874
## [16,]  1 2  0 1944.290
## [17,]  1 2  1 1868.474
## [18,]  1 2  2 1869.716
## [19,]  2 0  0 1884.058
## [20,]  2 0  1 1882.261
## [21,]  2 0  2 1875.342
## [22,]  2 1  0 1821.890
## [23,]  2 1  1 1816.072
## [24,]  2 1  2 1784.722
## [25,]  2 2  0 1897.500
## [26,]  2 2  1 1815.369
## [27,]  2 2  2 1810.019
## 
## $min
##       ar        d       ma      AIC 
##    2.000    1.000    2.000 1784.722
ArimaModel.5 <- Arima(woolyrnq$x,
                      order=c(2,1,2),
                      include.mean=1,
                      seasonal=list(order=c(0,0,0),
                                    period=4))
ArimaModel.5
## Series: woolyrnq$x 
## ARIMA(2,1,2)                    
## 
## Coefficients:
##          ar1      ar2      ma1     ma2
##       0.0076  -0.9791  -0.0699  0.7808
## s.e.  0.0197   0.0184   0.0730  0.0738
## 
## sigma^2 estimated as 194860:  log likelihood=-887.36
## AIC=1784.72   AICc=1785.26   BIC=1798.58
newdataset2=predar3(ArimaModel.5,fore1=48)