Sal vs. IL dommer bout analysis

exp1DB <- read.csv("~/Desktop/experiment 1 bout analysis D.csv")
exp1DB
##    Group.Db Day.Db Data.Db Group.Dbl Day.Dbl Data.Dbl
## 1    Saline      1  85.106    Saline       1    90.31
## 2    Saline      1  65.934    Saline       1   104.64
## 3    Saline      1  67.708    Saline       1    44.43
## 4    Saline      1 105.932    Saline       1   100.65
## 5    Saline      1  72.289    Saline       1    96.93
## 6    Saline      1  49.180    Saline       1   117.11
## 7    Saline      1 103.846    Saline       1    80.46
## 8    Saline      1 119.048    Saline       1    75.83
## 9    Saline      2 117.021    Saline       2    58.31
## 10   Saline      2  54.945    Saline       2    91.32
## 11   Saline      2  83.333    Saline       2    39.49
## 12   Saline      2 114.407    Saline       2   114.38
## 13   Saline      2  54.217    Saline       2   137.32
## 14   Saline      2 106.557    Saline       2   100.68
## 15   Saline      2  84.615    Saline       2    79.24
## 16   Saline      2  87.302    Saline       2    91.99
## 17   Saline      3 117.021    Saline       3    62.61
## 18   Saline      3  27.473    Saline       3    62.78
## 19   Saline      3  83.333    Saline       3    33.15
## 20   Saline      3 118.644    Saline       3   106.79
## 21   Saline      3  54.217    Saline       3    92.08
## 22   Saline      3 106.557    Saline       3   113.40
## 23   Saline      3 100.000    Saline       3    89.28
## 24   Saline      3  83.333    Saline       3    98.99
## 25    IL-1B      1   0.000     IL-1B       1   120.00
## 26    IL-1B      1   6.024     IL-1B       1    87.63
## 27    IL-1B      1  20.833     IL-1B       1    45.45
## 28    IL-1B      1  44.643     IL-1B       1    68.97
## 29    IL-1B      1  32.787     IL-1B       1   100.00
## 30    IL-1B      1  44.118     IL-1B       1   177.08
## 31    IL-1B      1  46.429     IL-1B       1    97.09
## 32    IL-1B      1  73.643     IL-1B       1    85.59
## 33    IL-1B      2  50.000     IL-1B       2    20.34
## 34    IL-1B      2  12.048     IL-1B       2    24.54
## 35    IL-1B      2  62.500     IL-1B       2    33.42
## 36    IL-1B      2  66.964     IL-1B       2    60.07
## 37    IL-1B      2  65.574     IL-1B       2    58.70
## 38    IL-1B      2  58.824     IL-1B       2    42.62
## 39    IL-1B      2  60.714     IL-1B       2   115.64
## 40    IL-1B      2   7.752     IL-1B       2   129.22
## 41    IL-1B      3 100.000     IL-1B       3    66.65
## 42    IL-1B      3  66.265     IL-1B       3    26.13
## 43    IL-1B      3  83.333     IL-1B       3    49.50
## 44    IL-1B      3 125.000     IL-1B       3    83.00
## 45    IL-1B      3 131.148     IL-1B       3    63.14
## 46    IL-1B      3  95.588     IL-1B       3    76.67
## 47    IL-1B      3 103.571     IL-1B       3    89.26
## 48    IL-1B      3  73.643     IL-1B       3   107.91
tapply(exp1DB$Data.Db, exp1DB$Group.Db, sd)
##  IL-1B Saline 
##  35.92  25.84
tapply(exp1DB$Data.Db, exp1DB$Day.Db, sd)
##     1     2     3 
## 34.76 31.14 27.40
exp1DB$Group.Db <- as.factor(exp1DB$Group.Db)
exp1DB$Day.Db <- as.factor(exp1DB$Day.Db)
exp1DB$Data.Db <- as.numeric(exp1DB$Data.Db)
aov.exp1DB = aov(Data.Db ~ Group.Db * Day.Db, data = exp1DB)
summary(aov.exp1DB)
##                 Df Sum Sq Mean Sq F value  Pr(>F)    
## Group.Db         1   8285    8285   12.84 0.00088 ***
## Day.Db           2   9397    4699    7.28 0.00193 ** 
## Group.Db:Day.Db  2   8548    4274    6.62 0.00316 ** 
## Residuals       42  27100     645                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
comparison <- aov(Data.Db ~ Group.Db * Day.Db, data = exp1DB)
TukeyHSD(comparison, "Group.Db")
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Data.Db ~ Group.Db * Day.Db, data = exp1DB)
## 
## $Group.Db
##               diff   lwr   upr p adj
## Saline-IL-1B 26.28 11.48 41.07 9e-04
TukeyHSD(comparison, "Day.Db")
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Data.Db ~ Group.Db * Day.Db, data = exp1DB)
## 
## $Day.Db
##       diff     lwr   upr  p adj
## 2-1  9.328 -12.490 31.15 0.5570
## 3-1 33.225  11.407 55.04 0.0018
## 3-2 23.897   2.079 45.72 0.0290
print(model.tables(aov.exp1DB, "means"), digits = 17)
## Tables of means
## Grand mean
##       
## 72.78 
## 
##  Group.Db 
## Group.Db
##  IL-1B Saline 
##  59.64  85.92 
## 
##  Day.Db 
## Day.Db
##     1     2     3 
## 58.60 67.92 91.82 
## 
##  Group.Db:Day.Db 
##         Day.Db
## Group.Db 1     2     3    
##   IL-1B  33.56 48.05 97.32
##   Saline 83.63 87.80 86.32
exp1DBl <- read.csv("~/Desktop/experiment 1 bout analysis D.csv")
exp1DBl
##    Group.Db Day.Db Data.Db Group.Dbl Day.Dbl Data.Dbl
## 1    Saline      1  85.106    Saline       1    90.31
## 2    Saline      1  65.934    Saline       1   104.64
## 3    Saline      1  67.708    Saline       1    44.43
## 4    Saline      1 105.932    Saline       1   100.65
## 5    Saline      1  72.289    Saline       1    96.93
## 6    Saline      1  49.180    Saline       1   117.11
## 7    Saline      1 103.846    Saline       1    80.46
## 8    Saline      1 119.048    Saline       1    75.83
## 9    Saline      2 117.021    Saline       2    58.31
## 10   Saline      2  54.945    Saline       2    91.32
## 11   Saline      2  83.333    Saline       2    39.49
## 12   Saline      2 114.407    Saline       2   114.38
## 13   Saline      2  54.217    Saline       2   137.32
## 14   Saline      2 106.557    Saline       2   100.68
## 15   Saline      2  84.615    Saline       2    79.24
## 16   Saline      2  87.302    Saline       2    91.99
## 17   Saline      3 117.021    Saline       3    62.61
## 18   Saline      3  27.473    Saline       3    62.78
## 19   Saline      3  83.333    Saline       3    33.15
## 20   Saline      3 118.644    Saline       3   106.79
## 21   Saline      3  54.217    Saline       3    92.08
## 22   Saline      3 106.557    Saline       3   113.40
## 23   Saline      3 100.000    Saline       3    89.28
## 24   Saline      3  83.333    Saline       3    98.99
## 25    IL-1B      1   0.000     IL-1B       1   120.00
## 26    IL-1B      1   6.024     IL-1B       1    87.63
## 27    IL-1B      1  20.833     IL-1B       1    45.45
## 28    IL-1B      1  44.643     IL-1B       1    68.97
## 29    IL-1B      1  32.787     IL-1B       1   100.00
## 30    IL-1B      1  44.118     IL-1B       1   177.08
## 31    IL-1B      1  46.429     IL-1B       1    97.09
## 32    IL-1B      1  73.643     IL-1B       1    85.59
## 33    IL-1B      2  50.000     IL-1B       2    20.34
## 34    IL-1B      2  12.048     IL-1B       2    24.54
## 35    IL-1B      2  62.500     IL-1B       2    33.42
## 36    IL-1B      2  66.964     IL-1B       2    60.07
## 37    IL-1B      2  65.574     IL-1B       2    58.70
## 38    IL-1B      2  58.824     IL-1B       2    42.62
## 39    IL-1B      2  60.714     IL-1B       2   115.64
## 40    IL-1B      2   7.752     IL-1B       2   129.22
## 41    IL-1B      3 100.000     IL-1B       3    66.65
## 42    IL-1B      3  66.265     IL-1B       3    26.13
## 43    IL-1B      3  83.333     IL-1B       3    49.50
## 44    IL-1B      3 125.000     IL-1B       3    83.00
## 45    IL-1B      3 131.148     IL-1B       3    63.14
## 46    IL-1B      3  95.588     IL-1B       3    76.67
## 47    IL-1B      3 103.571     IL-1B       3    89.26
## 48    IL-1B      3  73.643     IL-1B       3   107.91
tapply(exp1DBl$Data.Dbl, exp1DBl$Group.Dbl, sd)
##  IL-1B Saline 
##  37.71  25.95
tapply(exp1DBl$Data.Dbl, exp1DBl$Day.Dbl, sd)
##     1     2     3 
## 30.98 37.95 26.06
exp1DBl$Group.Dbl <- as.factor(exp1DBl$Group.Dbl)
exp1DBl$Day.Dbl <- as.factor(exp1DBl$Day.Dbl)
exp1DBl$Data.Dbl <- as.numeric(exp1DBl$Data.Dbl)
aov.exp1DBl = aov(Data.Dbl ~ Group.Dbl * Day.Dbl, data = exp1DBl)
summary(aov.exp1DBl)
##                   Df Sum Sq Mean Sq F value Pr(>F)
## Group.Dbl          1   1339    1339    1.34   0.25
## Day.Dbl            2   3352    1676    1.68   0.20
## Group.Dbl:Day.Dbl  2   2820    1410    1.41   0.26
## Residuals         42  42018    1000
comparison <- aov(Data.Dbl ~ Group.Dbl * Day.Dbl, data = exp1DBl)
TukeyHSD(comparison, "Group.Dbl")
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Data.Dbl ~ Group.Dbl * Day.Dbl, data = exp1DBl)
## 
## $Group.Dbl
##               diff    lwr   upr  p adj
## Saline-IL-1B 10.56 -7.862 28.99 0.2538
TukeyHSD(comparison, "Day.Dbl")
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Data.Dbl ~ Group.Dbl * Day.Dbl, data = exp1DBl)
## 
## $Day.Dbl
##        diff    lwr    upr  p adj
## 2-1 -18.431 -45.60  8.738 0.2372
## 3-1 -16.926 -44.09 10.243 0.2950
## 3-2   1.505 -25.66 28.674 0.9901
print(model.tables(aov.exp1DBl, "means"), digits = 17)
## Tables of means
## Grand mean
##       
## 81.47 
## 
##  Group.Dbl 
## Group.Dbl
##  IL-1B Saline 
##  76.19  86.76 
## 
##  Day.Dbl 
## Day.Dbl
##     1     2     3 
## 93.26 74.83 76.33 
## 
##  Group.Dbl:Day.Dbl 
##          Day.Dbl
## Group.Dbl 1     2     3    
##    IL-1B  97.73 60.57 70.28
##    Saline 88.79 89.09 82.39