Experiment 1 Dommer Bout Analysis
data <- read.csv("Stats.csv")
Day1Treatment <- data[(data$Group.E1Db == 1) & (data$Day.E1Db == 1), ]
Day1NoTreatment <- data[(data$Group.E1Db == 0) & (data$Day.E1Db == 1), ]
Day2Treatment <- data[(data$Group.E1Db == 1) & (data$Day.E1Db == 2), ]
Day2NoTreatment <- data[(data$Group.E1Db == 0) & (data$Day.E1Db == 2), ]
Day3Treatment <- data[(data$Group.E1Db == 1) & (data$Day.E1Db == 3), ]
Day3NoTreatment <- data[(data$Group.E1Db == 0) & (data$Day.E1Db == 3), ]
Day1bTTEST <- t.test(Day1Treatment$Data.E1Db, Day1NoTreatment$Data.E1Db, paired = TRUE)
Day2bTTEST <- t.test(Day2Treatment$Data.E1Db, Day2NoTreatment$Data.E1Db, paired = TRUE)
Day3bTTEST <- t.test(Day3Treatment$Data.E1Db, Day3NoTreatment$Data.E1Db, paired = TRUE)
Day1bTTEST
##
## Paired t-test
##
## data: Day1Treatment$Data.E1Db and Day1NoTreatment$Data.E1Db
## t = -6.182, df = 7, p-value = 0.0004531
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -69.22 -30.92
## sample estimates:
## mean of the differences
## -50.07
Day2bTTEST
##
## Paired t-test
##
## data: Day2Treatment$Data.E1Db and Day2NoTreatment$Data.E1Db
## t = -3.947, df = 7, p-value = 0.005556
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -63.57 -15.94
## sample estimates:
## mean of the differences
## -39.75
Day3bTTEST
##
## Paired t-test
##
## data: Day3Treatment$Data.E1Db and Day3NoTreatment$Data.E1Db
## t = 0.9826, df = 7, p-value = 0.3585
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -15.47 37.46
## sample estimates:
## mean of the differences
## 11
data <- read.csv("Stats.csv")
Day1Treatment <- data[(data$Group.E1Dbl == 1) & (data$Day.E1Dbl == 1), ]
Day1NoTreatment <- data[(data$Group.E1Dbl == 0) & (data$Day.E1Dbl == 1), ]
Day2Treatment <- data[(data$Group.E1Dbl == 1) & (data$Day.E1Dbl == 2), ]
Day2NoTreatment <- data[(data$Group.E1Dbl == 0) & (data$Day.E1Dbl == 2), ]
Day3Treatment <- data[(data$Group.E1Dbl == 1) & (data$Day.E1Dbl == 3), ]
Day3NoTreatment <- data[(data$Group.E1Dbl == 0) & (data$Day.E1Dbl == 3), ]
Day1blTTEST <- t.test(Day1Treatment$Data.E1Dbl, Day1NoTreatment$Data.E1Dbl,
paired = TRUE)
Day2blTTEST <- t.test(Day2Treatment$Data.E1Dbl, Day2NoTreatment$Data.E1Dbl,
paired = TRUE)
Day3blTTEST <- t.test(Day3Treatment$Data.E1Dbl, Day3NoTreatment$Data.E1Dbl,
paired = TRUE)
Day1blTTEST
##
## Paired t-test
##
## data: Day1Treatment$Data.E1Dbl and Day1NoTreatment$Data.E1Dbl
## t = 0.8999, df = 7, p-value = 0.3981
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -14.54 32.40
## sample estimates:
## mean of the differences
## 8.931
Day2blTTEST
##
## Paired t-test
##
## data: Day2Treatment$Data.E1Dbl and Day2NoTreatment$Data.E1Dbl
## t = -1.764, df = 7, p-value = 0.1211
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -66.760 9.713
## sample estimates:
## mean of the differences
## -28.52
Day3blTTEST
##
## Paired t-test
##
## data: Day3Treatment$Data.E1Dbl and Day3NoTreatment$Data.E1Dbl
## t = -1.579, df = 7, p-value = 0.1583
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -30.221 6.019
## sample estimates:
## mean of the differences
## -12.1