Experiment 1 Falafel Wheel and Motion
data <- read.csv("Stats.csv")
Day1Treatment <- data[(data$Group.E1FWheel == 1) & (data$Day.E1FWheel == 1),
]
Day1NoTreatment <- data[(data$Group.E1FWheel == 0) & (data$Day.E1FWheel == 1),
]
Day2Treatment <- data[(data$Group.E1FWheel == 1) & (data$Day.E1FWheel == 2),
]
Day2NoTreatment <- data[(data$Group.E1FWheel == 0) & (data$Day.E1FWheel == 2),
]
Day3Treatment <- data[(data$Group.E1FWheel == 1) & (data$Day.E1FWheel == 3),
]
Day3NoTreatment <- data[(data$Group.E1FWheel == 0) & (data$Day.E1FWheel == 3),
]
Day1WTTEST <- t.test(Day1Treatment$Data.E1FWheel, Day1NoTreatment$Data.E1FWheel,
paired = TRUE)
Day2WTTEST <- t.test(Day2Treatment$Data.E1FWheel, Day2NoTreatment$Data.E1FWheel,
paired = TRUE)
Day3WTTEST <- t.test(Day3Treatment$Data.E1FWheel, Day3NoTreatment$Data.E1FWheel,
paired = TRUE)
Day1WTTEST
##
## Paired t-test
##
## data: Day1Treatment$Data.E1FWheel and Day1NoTreatment$Data.E1FWheel
## t = -5.77, df = 9, p-value = 0.0002695
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -55.47 -24.22
## sample estimates:
## mean of the differences
## -39.85
Day2WTTEST
##
## Paired t-test
##
## data: Day2Treatment$Data.E1FWheel and Day2NoTreatment$Data.E1FWheel
## t = -3.673, df = 9, p-value = 0.00513
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -47.93 -11.39
## sample estimates:
## mean of the differences
## -29.66
Day3WTTEST
##
## Paired t-test
##
## data: Day3Treatment$Data.E1FWheel and Day3NoTreatment$Data.E1FWheel
## t = 3.15, df = 9, p-value = 0.01174
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 9.801 59.740
## sample estimates:
## mean of the differences
## 34.77
data <- read.csv("Stats.csv")
Day1Treatment <- data[(data$Group.E1FMotion == 1) & (data$Day.E1FMotion == 1),
]
Day1NoTreatment <- data[(data$Group.E1FMotion == 0) & (data$Day.E1FMotion ==
1), ]
Day2Treatment <- data[(data$Group.E1FMotion == 1) & (data$Day.E1FMotion == 2),
]
Day2NoTreatment <- data[(data$Group.E1FMotion == 0) & (data$Day.E1FMotion ==
2), ]
Day3Treatment <- data[(data$Group.E1FMotion == 1) & (data$Day.E1FMotion == 3),
]
Day3NoTreatment <- data[(data$Group.E1FMotion == 0) & (data$Day.E1FMotion ==
3), ]
Day1MTTEST <- t.test(Day1Treatment$Data.E1FMotion, Day1NoTreatment$Data.E1FMotion,
paired = TRUE)
Day2MTTEST <- t.test(Day2Treatment$Data.E1FMotion, Day2NoTreatment$Data.E1FMotion,
paired = TRUE)
Day3MTTEST <- t.test(Day3Treatment$Data.E1FMotion, Day3NoTreatment$Data.E1FMotion,
paired = TRUE)
Day1MTTEST
##
## Paired t-test
##
## data: Day1Treatment$Data.E1FMotion and Day1NoTreatment$Data.E1FMotion
## t = -4.398, df = 9, p-value = 0.001726
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -61.25 -19.64
## sample estimates:
## mean of the differences
## -40.45
Day2MTTEST
##
## Paired t-test
##
## data: Day2Treatment$Data.E1FMotion and Day2NoTreatment$Data.E1FMotion
## t = -1.786, df = 9, p-value = 0.1077
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -45.146 5.307
## sample estimates:
## mean of the differences
## -19.92
Day3MTTEST
##
## Paired t-test
##
## data: Day3Treatment$Data.E1FMotion and Day3NoTreatment$Data.E1FMotion
## t = 1.609, df = 9, p-value = 0.142
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -10.96 65.01
## sample estimates:
## mean of the differences
## 27.02