\[ Pr(k>=1) = 1 - Pr(k=0) \] \[ where Pr(X=0) = \frac{P_k^{365}}{365^{k}}\] \[ Pr(k>=1) =\prod_{i=0}^k (1 - \frac{i}{365})\]
k = 23 # number of people in room
p <- numeric(k) # create numeric vector to store probabilities
for (i in 1:k) {
q <- 1 - (0:(i - 1))/365 # 1 - prob(no matches)
p[i] <- 1 - prod(q) }
prob <- p[k]
prob
## [1] 0.5072972
k = 100 # number of people in room
p <- numeric(k) # create numeric vector to store probabilities
for (i in 1:k) {
q <- 1 - (0:(i - 1))/365 # 1 - prob(no matches)
p[i] <- 1 - prod(q) }
plot(p, main="Probability at least 2 people have same Birthday", xlab ="Number of People", ylab = "Probability", col="blue")
Number.of.People <-c(seq(1,100,1))
Probabilities <- format(p, digits=3)
probs <- cbind(Number.of.People, Probabilities )
# Output Table
DT::datatable(probs, rownames=FALSE, options = list(autowidth=TRUE, sClass="alignCenter", className = 'dt-Center', pageLength=10))