##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####
#### VARIABLE TEMPERATURA AMBIENTE ####
## DATASET ##
setwd("~/R/AMBIENT_TEMPERATURE")
# Cargar dataset
Datos <- read.csv("Dataset_Mundial_Final.csv", sep = ";", dec = ",", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)## 'data.frame': 58978 obs. of 29 variables:
## $ ï..OBJECTID : int 2 3 4 5 6 7 8 9 10 11 ...
## $ code : chr "00001-AFG-P" "00002-AFG-P" "00003-AFG-P" "00004-AFG-P" ...
## $ plant_name : chr "Badghis Solar Power Plant" "Balkh solar farm" "Behsood solar farm" "Dab Pal 4 solar farm" ...
## $ country : chr "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
## $ operational_status : chr "cancelled - inferred 4 y" "cancelled - inferred 4 y" "cancelled - inferred 4 y" "shelved - inferred 2 y" ...
## $ longitude : num 62.9 67.1 70.4 66.2 65.7 ...
## $ latitude : num 35.1 36.7 34.4 33.8 31.7 ...
## $ elevation : int 918 359 629 2288 1060 1060 1392 398 410 1012 ...
## $ area : num 6.74 10.72 487.73 111.8 1929.96 ...
## $ size : chr "Small" "Small" "Small" "Small" ...
## $ slope : num 7.38 0.49 1.1 6.16 1.23 ...
## $ slope_type : chr "Moderado" "Plano o casi plano" "Plano o casi plano" "Moderado" ...
## $ curvature : num -0.024 0 0 0.045 -0.005 -0.005 -0.015 0 0 -0.009 ...
## $ curvature_type : chr "Superficies cóncavas / Valles" "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies convexas / Crestas" ...
## $ aspect : num 96.8 358.5 36.2 305.8 248.4 ...
## $ aspect_type : chr "East" "North" "Northeast" "Northwest" ...
## $ dist_to_road : num 7037.1 92.7 112.1 1705.3 115.8 ...
## $ ambient_temperature : num 14.4 17.88 21.32 8.86 19.64 ...
## $ ghi : num 5.82 5.58 5.8 6.75 6.62 ...
## $ humidity : num 47.7 42.3 36.4 37.3 24.2 ...
## $ wind_speed : num 0.039 0.954 0.234 0.943 0.37 ...
## $ wind_direction : num 187.5 207.4 255.6 160.3 97.7 ...
## $ dt_wind : chr "South" "Southwest" "West" "South" ...
## $ solar_aptitude : num 0.72 0.635 0.685 0.659 0.819 0.819 0.818 0.642 0.63 0.374 ...
## $ solar_aptitude_rounded: int 7 6 7 7 8 8 8 6 6 4 ...
## $ solar_aptittude_class : chr "Alta" "Alta" "Alta" "Alta" ...
## $ capacity : num 32 40 60 3000 100 100 36 50 25 100 ...
## $ optimal_tilt : num 30 31 31.1 33 31 ...
## $ pv_potential : num 4.61 4.41 4.57 5.42 5.17 ...
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Extraer variable
Variable <- na.omit(Datos$ambient_temperature)
N <- length(Variable)
# CÁLCULO LÍMITES DECIMALES
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec
# Cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001
# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))
# CÁLCULOS MATEMÁTICOS
hi_dec <- (ni_dec / N) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec)
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))
# Dataframe Decimal
TDF_Decimal <- data.frame(
Li = cortes_dec[1:k_dec],
Ls = cortes_dec[2:(k_dec+1)],
MC = (cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2,
ni = ni_dec,
hi = hi_dec,
Ni_asc = Ni_asc_dec,
Ni_desc = Ni_desc_dec,
Hi_asc = Hi_asc_dec,
Hi_desc = Hi_desc_dec)
# CÁLCULO LÍMITES ENTEROS
BASE <- 2
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
Amplitud_int <- 2
cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = 20)
cortes_int <- cortes_int[cortes_int <= (max(Variable) + Amplitud_int)]
if(max(cortes_int) < max(Variable)) {
cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}
K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]
# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))
# CÁLCULOS MATEMÁTICOS
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Hi_asc_int <- cumsum(hi_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_desc_int <- rev(cumsum(rev(hi_int)))
# Dataframe Entero
TDF_Enteros <- data.frame(
Li = lim_inf_int,
Ls = lim_sup_int,
MC = (lim_inf_int + lim_sup_int) / 2,
ni = ni_int,
hi = hi_int,
Ni_asc = Ni_asc_int,
Ni_desc = Ni_desc_int,
Hi_asc = Hi_asc_int,
Hi_desc = Hi_desc_int)# Crear Dataframe
TDF_Dec_Final <- data.frame(
Li = as.character(round(TDF_Decimal$Li, 2)),
Ls = as.character(round(TDF_Decimal$Ls, 2)),
MC = as.character(round(TDF_Decimal$MC, 2)),
ni = as.character(TDF_Decimal$ni),
hi = as.character(round(TDF_Decimal$hi, 2)),
Ni_asc = as.character(TDF_Decimal$Ni_asc),
Ni_desc = as.character(TDF_Decimal$Ni_desc),
Hi_asc = as.character(round(TDF_Decimal$Hi_asc, 2)),
Hi_desc = as.character(round(TDF_Decimal$Hi_desc, 2))
)
# Calcular Totales
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), round(sum(TDF_Decimal$hi), 2), "-", "-", "-", "-")
TDF_Dec_Final <- rbind(TDF_Dec_Final, totales_dec)
# Generar GT
TDF_Dec_Final %>%
gt() %>%
tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias de Temperatura Ambiente (°C) de las Plantas Solares**")) %>%
cols_label(
Li = "Lim. Inf",
Ls = "Lim. Sup",
MC = "Marca Clase",
ni = "Frec. Abs (ni)",
hi = "Frec. Rel (%)",
Ni_asc = "Ni (Asc)",
Ni_desc = "Ni (Desc)",
Hi_asc = "Hi Asc (%)",
Hi_desc = "Hi Desc (%)"
) %>%
cols_align(align = "center", columns = everything()) %>%
tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")| Tabla N°1 de Distribución de Frecuencias de Temperatura Ambiente (°C) de las Plantas Solares | ||||||||
| Lim. Inf | Lim. Sup | Marca Clase | Frec. Abs (ni) | Frec. Rel (%) | Ni (Asc) | Ni (Desc) | Hi Asc (%) | Hi Desc (%) |
|---|---|---|---|---|---|---|---|---|
| -17.06 | -14.1 | -15.58 | 1 | 0 | 1 | 58978 | 0 | 100 |
| -14.1 | -11.14 | -12.62 | 0 | 0 | 1 | 58977 | 0 | 100 |
| -11.14 | -8.18 | -9.66 | 0 | 0 | 1 | 58977 | 0 | 100 |
| -8.18 | -5.21 | -6.69 | 13 | 0.02 | 14 | 58977 | 0.02 | 100 |
| -5.21 | -2.25 | -3.73 | 35 | 0.06 | 49 | 58964 | 0.08 | 99.98 |
| -2.25 | 0.71 | -0.77 | 210 | 0.36 | 259 | 58929 | 0.44 | 99.92 |
| 0.71 | 3.68 | 2.19 | 320 | 0.54 | 579 | 58719 | 0.98 | 99.56 |
| 3.68 | 6.64 | 5.16 | 1411 | 2.39 | 1990 | 58399 | 3.37 | 99.02 |
| 6.64 | 9.6 | 8.12 | 8396 | 14.24 | 10386 | 56988 | 17.61 | 96.63 |
| 9.6 | 12.56 | 11.08 | 14841 | 25.16 | 25227 | 48592 | 42.77 | 82.39 |
| 12.56 | 15.53 | 14.05 | 11902 | 20.18 | 37129 | 33751 | 62.95 | 57.23 |
| 15.53 | 18.49 | 17.01 | 10075 | 17.08 | 47204 | 21849 | 80.04 | 37.05 |
| 18.49 | 21.45 | 19.97 | 2975 | 5.04 | 50179 | 11774 | 85.08 | 19.96 |
| 21.45 | 24.42 | 22.93 | 2608 | 4.42 | 52787 | 8799 | 89.5 | 14.92 |
| 24.42 | 27.38 | 25.9 | 4963 | 8.42 | 57750 | 6191 | 97.92 | 10.5 |
| 27.38 | 30.34 | 28.86 | 1228 | 2.08 | 58978 | 1228 | 100 | 2.08 |
| TOTAL | - | - | 58978 | 100 | - | - | - | - |
# Crear Dataframe
TDF_Int_Final <- data.frame(
Li = as.character(TDF_Enteros$Li),
Ls = as.character(TDF_Enteros$Ls),
MC = as.character(TDF_Enteros$MC),
ni = as.character(TDF_Enteros$ni),
hi = as.character(round(TDF_Enteros$hi, 2)),
Ni_asc = as.character(TDF_Enteros$Ni_asc),
Ni_desc = as.character(TDF_Enteros$Ni_desc),
Hi_asc = as.character(round(TDF_Enteros$Hi_asc, 2)),
Hi_desc = as.character(round(TDF_Enteros$Hi_desc, 2))
)
# Calcular Totales
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), round(sum(TDF_Enteros$hi), 2), "-", "-", "-", "-")
TDF_Int_Final <- rbind(TDF_Int_Final, totales_int)
# Generar GT
TDF_Int_Final %>%
gt() %>%
tab_header(title = md("**Tabla N°2 de Distribución de Frecuencias de Temperatura Ambiente (°C) de las Plantas Solares**")) %>%
cols_label(
Li = "Lim. Inf",
Ls = "Lim. Sup",
MC = "Marca Clase",
ni = "Frec. Abs (ni)",
hi = "Frec. Rel (%)",
Ni_asc = "Ni (Asc)",
Ni_desc = "Ni (Desc)",
Hi_asc = "Hi Asc (%)",
Hi_desc = "Hi Desc (%)"
) %>%
cols_align(align = "center", columns = everything()) %>%
tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")| Tabla N°2 de Distribución de Frecuencias de Temperatura Ambiente (°C) de las Plantas Solares | ||||||||
| Lim. Inf | Lim. Sup | Marca Clase | Frec. Abs (ni) | Frec. Rel (%) | Ni (Asc) | Ni (Desc) | Hi Asc (%) | Hi Desc (%) |
|---|---|---|---|---|---|---|---|---|
| -18 | -16 | -17 | 1 | 0 | 1 | 50649 | 0 | 85.88 |
| -16 | -14 | -15 | 0 | 0 | 1 | 50648 | 0 | 85.88 |
| -14 | -12 | -13 | 0 | 0 | 1 | 50648 | 0 | 85.88 |
| -12 | -10 | -11 | 0 | 0 | 1 | 50648 | 0 | 85.88 |
| -10 | -8 | -9 | 0 | 0 | 1 | 50648 | 0 | 85.88 |
| -8 | -6 | -7 | 5 | 0.01 | 6 | 50648 | 0.01 | 85.88 |
| -6 | -4 | -5 | 18 | 0.03 | 24 | 50643 | 0.04 | 85.87 |
| -4 | -2 | -3 | 31 | 0.05 | 55 | 50625 | 0.09 | 85.84 |
| -2 | 0 | -1 | 49 | 0.08 | 104 | 50594 | 0.18 | 85.78 |
| 0 | 2 | 1 | 217 | 0.37 | 321 | 50545 | 0.54 | 85.7 |
| 2 | 4 | 3 | 323 | 0.55 | 644 | 50328 | 1.09 | 85.33 |
| 4 | 6 | 5 | 824 | 1.4 | 1468 | 50005 | 2.49 | 84.79 |
| 6 | 8 | 7 | 2334 | 3.96 | 3802 | 49181 | 6.45 | 83.39 |
| 8 | 10 | 9 | 9579 | 16.24 | 13381 | 46847 | 22.69 | 79.43 |
| 10 | 12 | 11 | 9754 | 16.54 | 23135 | 37268 | 39.23 | 63.19 |
| 12 | 14 | 13 | 7471 | 12.67 | 30606 | 27514 | 51.89 | 46.65 |
| 14 | 16 | 15 | 8676 | 14.71 | 39282 | 20043 | 66.6 | 33.98 |
| 16 | 18 | 17 | 6859 | 11.63 | 46141 | 11367 | 78.23 | 19.27 |
| 18 | 20 | 19 | 2885 | 4.89 | 49026 | 4508 | 83.13 | 7.64 |
| 20 | 22 | 21 | 1623 | 2.75 | 50649 | 1623 | 85.88 | 2.75 |
| TOTAL | - | - | 50649 | 85.88 | - | - | - | - |
par(mar = c(8, 7, 5, 2))
barplot(TDF_Enteros$ni,
names.arg = TDF_Enteros$MC,
main = "",
xlab = "",
ylab = "",
col = "#EE5C42",
ylim = c(0, max(TDF_Enteros$ni) * 1.2),
space = 0,
las = 2,
cex.names = 0.7)
mtext("Cantidad", side = 2, line = 4.5, cex = 1, font = 1)
mtext("Temperatura (°C)", side = 1, line = 4)
mtext("Gráfica N°1: Distribución de Cantidad de Plantas Solares por Temperatura",
side = 3,
line = 2,
adj = 0.5,
cex = 0.9,
font = 2)par(mar = c(8, 7, 5, 2))
barplot(TDF_Enteros$ni,
main="",
xlab = "",
ylab = "",
names.arg = TDF_Enteros$MC,
col = "#EE5C42",
space = 0,
cex.names = 0.7,
las = 2,
ylim = c(0, 58978))
mtext("Cantidad", side = 2, line = 4.5, cex = 1, font = 1)
mtext("Temperatura (°C)", side = 1, line = 4)
mtext("Gráfica N°2: Distribución de Cantidad de Plantas Solares por Temperatura",
side = 3,
line = 2,
adj = 0.5,
cex = 0.9,
font = 2)par(mar = c(8, 5, 5, 2))
bp3 <- barplot(TDF_Enteros$hi,
main = "",
xlab = "",
ylab = "Porcentaje (%)",
col = "#EE5C42",
space = 0,
names.arg = TDF_Enteros$MC,
cex.names = 0.7,
las = 2,
ylim = c(0, max(TDF_Enteros$hi) * 1.2))
mtext("Temperatura (°C)", side = 1, line = 4)
mtext("Gráfica N°3: Distribución Porcentual de las Plantas Solares por Temperatura",
side = 3,
line = 2,
adj = 0.5,
cex = 0.9,
font = 2)
text(x = bp3,
y = TDF_Enteros$hi,
labels = paste0(round(TDF_Enteros$hi, 2), "%"),
pos = 3, cex = 0.4, col = "black")par(mar = c(8, 5, 5, 2))
bp4 <- barplot(TDF_Enteros$hi,
main = "",
xlab = "",
ylab = "Porcentaje (%)",
col = "#EE5C42",
space = 0,
names.arg = TDF_Enteros$MC,
las = 2,
cex.names = 0.7,
ylim = c(0, 100))
mtext("Temperatura (°C)", side = 1, line = 4)
mtext("Gráfica N°4: Distribución Porcentual Global de las Plantas Solares por Temperatura",
side = 3,
line = 2,
adj = 0.5,
cex = 0.9,
font = 2)
text(x = bp4,
y = TDF_Enteros$hi,
labels = paste0(round(TDF_Enteros$hi, 2), "%"),
pos = 3, cex = 0.4, col = "black")par(mar = c(5, 5, 4, 2))
boxplot(Variable,
horizontal = TRUE,
col = "#EE5C42",
xlab = "Temperatura (°C)",
cex.main = 0.9,
main = "Gráfica N°5: Distribución de la Temperatura Ambiente en las Plantas Solares")par(mar = c(5, 5, 4, 10), xpd = TRUE)
# Coordenadas
x_asc <- TDF_Enteros$Ls
x_desc <- TDF_Enteros$Li
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc
# 1. Dibujar la Ascendente
plot(x_asc, y_asc,
type = "b",
main = "",
xlab = "Temperatura (°C)",
ylab = "Frecuencia acumulada",
col = "black",
pch = 19,
xlim = c(min(TDF_Enteros$Li), max(x_asc)),
ylim = c(0, sum(TDF_Enteros$ni)),
bty = "l"
)
# 2. Agregar la Descendente
lines(x_desc, y_desc, col = "#8B3626", type = "b", pch = 19)
grid()
mtext("Gráfica N°6: Ojivas Ascendentes y Descendentes de la\nDistribución de la Temperatura en las Plantas Solares",
side = 3,
line = 3,
adj = 0.5,
cex = 0.9,
font = 2)
legend("left",
legend = c("Ascendente", "Descendente"),
col = c("black", "#8B3626"),
lty = 1,
pch = 1,
cex = 0.6,
inset = c(0.05, 0.05),
bty = "n")## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)
# Mediana
mediana <- round(median(Variable), 2)
# Moda
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")
## INDICADORES DE DISPERSIÓN
# Varianza
varianza <- var(Variable)
# Desviación Estándar
sd_val <- sd(Variable)
# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)
## INDICADORES DE FORMA
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)
# Curtosis
curtosis <- kurtosis(Variable)
# Outliers
Q1 <- quantile(Variable, 0.25)
Q3 <- quantile(Variable, 0.75)
IQR_val <- Q3 - Q1
lim_inf <- Q1 - 1.5 * IQR_val
lim_sup <- Q3 + 1.5 * IQR_val
outliers_data <- Variable[Variable < lim_inf | Variable > lim_sup]
num_outliers <- length(outliers_data)
if(num_outliers > 0){
rango_outliers <- paste0(num_outliers, " [", round(min(outliers_data), 2), "; ", round(max(outliers_data), 2), "]")
} else {
rango_outliers <- "0 [Sin Outliers]"
}
tabla_indicadores <- data.frame(
"Variable" = c("Temperatura Ambiente (°C)"),
"Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
"X" = c(media),
"Me" = c(mediana),
"Mo" = c(moda_txt),
"V" = c(varianza),
"Sd" = c(sd_val),
"Cv" = c(cv),
"As" = c(asimetria),
"K" = c(curtosis),
"Outliers" = rango_outliers)
# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
gt() %>%
tab_header(title = md("**Tabla N°3 de Conclusiones de Temperatura Ambiente de las Plantas Solares**")) %>%
tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
cols_label(
Variable = "Variable",
Rango_MinMax = "Rango",
X = "Media (X)",
Me = "Mediana (Me)",
Mo = "Moda (Mo)",
V = "Varianza (V)",
Sd = "Desv. Est. (Sd)",
Cv = "C.V. (%)",
As = "Asimetría (As)",
K = "Curtosis (K)",
Outliers = "Outliers [Intervalo]"
) %>%
tab_options(
heading.title.font.size = px(16),
column_labels.background.color = "#F0F0F0"
)
tabla_conclusiones_gt| Tabla N°3 de Conclusiones de Temperatura Ambiente de las Plantas Solares | ||||||||||
| Variable | Rango | Media (X) | Mediana (Me) | Moda (Mo) | Varianza (V) | Desv. Est. (Sd) | C.V. (%) | Asimetría (As) | Curtosis (K) | Outliers [Intervalo] |
|---|---|---|---|---|---|---|---|---|---|---|
| Temperatura Ambiente (°C) | [-17.06; 30.34] | 14.59 | 13.74 | 11 | 33.29016 | 5.769762 | 39.55 | 0.647596 | -0.01910778 | 644 [-17.06; 30.34] |
| Autor: Martin Sarmiento | ||||||||||
La variable “Temperatura Ambiente” fluctúa entre -17.06 y 30.34 °C y sus valores se encuentran alrededor de 13.74 °C, con una desviación estándar de 5.769762 , siendo una variable heterogénea, cuyos valores se concentran en la parte media alta de la variable con la agregación de valores atípicos de 644 outliers; por todo lo anterior, el comportamiento de la variable es irregular.