1 Configuración y Carga de Datos

##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####


#### VARIABLE ASPECTO ####
## DATASET ##
setwd("~/R/ASPECT")
# Cargar dataset
Datos <- read.csv("DataSet_Mundial_Final.csv", sep = ";", dec = ",", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame':    58978 obs. of  29 variables:
##  $ ï..OBJECTID           : int  2 3 4 5 6 7 8 9 10 11 ...
##  $ code                  : chr  "00001-AFG-P" "00002-AFG-P" "00003-AFG-P" "00004-AFG-P" ...
##  $ plant_name            : chr  "Badghis Solar Power Plant" "Balkh solar farm" "Behsood solar farm" "Dab Pal 4 solar farm" ...
##  $ country               : chr  "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
##  $ operational_status    : chr  "cancelled - inferred 4 y" "cancelled - inferred 4 y" "cancelled - inferred 4 y" "shelved - inferred 2 y" ...
##  $ longitude             : num  62.9 67.1 70.4 66.2 65.7 ...
##  $ latitude              : num  35.1 36.7 34.4 33.8 31.7 ...
##  $ elevation             : int  918 359 629 2288 1060 1060 1392 398 410 1012 ...
##  $ area                  : num  6.74 10.72 487.73 111.8 1929.96 ...
##  $ size                  : chr  "Small" "Small" "Small" "Small" ...
##  $ slope                 : num  7.38 0.49 1.1 6.16 1.23 ...
##  $ slope_type            : chr  "Moderado" "Plano o casi plano" "Plano o casi plano" "Moderado" ...
##  $ curvature             : num  -0.024 0 0 0.045 -0.005 -0.005 -0.015 0 0 -0.009 ...
##  $ curvature_type        : chr  "Superficies cóncavas / Valles" "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies convexas / Crestas" ...
##  $ aspect                : num  96.8 358.5 36.2 305.8 248.4 ...
##  $ aspect_type           : chr  "East" "North" "Northeast" "Northwest" ...
##  $ dist_to_road          : num  7037.1 92.7 112.1 1705.3 115.8 ...
##  $ ambient_temperature   : num  14.4 17.88 21.32 8.86 19.64 ...
##  $ ghi                   : num  5.82 5.58 5.8 6.75 6.62 ...
##  $ humidity              : num  47.7 42.3 36.4 37.3 24.2 ...
##  $ wind_speed            : num  0.039 0.954 0.234 0.943 0.37 ...
##  $ wind_direction        : num  187.5 207.4 255.6 160.3 97.7 ...
##  $ dt_wind               : chr  "South" "Southwest" "West" "South" ...
##  $ solar_aptitude        : num  0.72 0.635 0.685 0.659 0.819 0.819 0.818 0.642 0.63 0.374 ...
##  $ solar_aptitude_rounded: int  7 6 7 7 8 8 8 6 6 4 ...
##  $ solar_aptittude_class : chr  "Alta" "Alta" "Alta" "Alta" ...
##  $ capacity              : num  32 40 60 3000 100 100 36 50 25 100 ...
##  $ optimal_tilt          : num  30 31 31.1 33 31 ...
##  $ pv_potential          : num  4.61 4.41 4.57 5.42 5.17 ...
# Cargamos las librerias
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gt)
library(e1071)

2 Cálculo de Intervalos y Frecuencias

# Extraer variable
Variable <- na.omit(Datos$aspect)
N <- length(Variable)

# CÁLCULO LÍMITES DECIMALES
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec

# Cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001

# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))

# CÁLCULOS MATEMÁTICOS 
hi_dec <- (ni_dec / N) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec)
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))

# Dataframe Decimal
TDF_Decimal <- data.frame(
  Li = cortes_dec[1:k_dec],
  Ls = cortes_dec[2:(k_dec+1)],
  MC = (cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2,
  ni = ni_dec,
  hi = hi_dec,
  Ni_asc = Ni_asc_dec,
  Ni_desc = Ni_desc_dec,
  Hi_asc = Hi_asc_dec,
  Hi_desc = Hi_desc_dec)


# CÁLCULO LÍMITES ENTEROS
BASE <- 10
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
k_int_sug <- floor(1 + 3.322 * log10(N))
Rango_int <- max_int - min_int
Amplitud_raw <- Rango_int / k_int_sug

Amplitud_int <- ceiling(Amplitud_raw / 10) * 10
if(Amplitud_int == 0) Amplitud_int <- 10

cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = k_int_sug + 1)
if(max(cortes_int) < max(Variable)) {
  cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}

while(length(cortes_int) > 2 && cortes_int[length(cortes_int)-1] >= max(Variable)) {
  cortes_int <- cortes_int[-length(cortes_int)]
}

K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]

# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))

# CÁLCULOS MATEMÁTICOS
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Hi_asc_int <- cumsum(hi_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_desc_int <- rev(cumsum(rev(hi_int)))

# Dataframe Entero
TDF_Enteros <- data.frame(
  Li = lim_inf_int,
  Ls = lim_sup_int,
  MC = (lim_inf_int + lim_sup_int) / 2,
  ni = ni_int,
  hi = hi_int,
  Ni_asc = Ni_asc_int,
  Ni_desc = Ni_desc_int,
  Hi_asc = Hi_asc_int,
  Hi_desc = Hi_desc_int)

3 Tabla de Distribución de Frecuencias

3.1 Tabla con Límites Decimales

# Crear Dataframe
TDF_Dec_Final <- data.frame(
  Li      = as.character(round(TDF_Decimal$Li, 2)),
  Ls      = as.character(round(TDF_Decimal$Ls, 2)),
  MC      = as.character(round(TDF_Decimal$MC, 2)),
  ni      = as.character(TDF_Decimal$ni),
  hi      = as.character(round(TDF_Decimal$hi, 2)),
  Ni_asc  = as.character(TDF_Decimal$Ni_asc),
  Ni_desc = as.character(TDF_Decimal$Ni_desc),
  Hi_asc  = as.character(round(TDF_Decimal$Hi_asc, 2)),
  Hi_desc = as.character(round(TDF_Decimal$Hi_desc, 2))
)

# Calcular Totales
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), round(sum(TDF_Decimal$hi), 2), "-", "-", "-", "-")
TDF_Dec_Final <- rbind(TDF_Dec_Final, totales_dec)

# Generar GT
TDF_Dec_Final %>%
  gt() %>%
  tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias del Aspecto (°) de las Plantas Solares**")) %>%
  cols_label(
    Li = "Lim. Inf", 
    Ls = "Lim. Sup", 
    MC = "Marca Clase",
    ni = "Frec. Abs (ni)", 
    hi = "Frec. Rel (%)",
    Ni_asc = "Ni (Asc)", 
    Ni_desc = "Ni (Desc)",
    Hi_asc = "Hi Asc (%)", 
    Hi_desc = "Hi Desc (%)"
  ) %>%
  cols_align(align = "center", columns = everything()) %>%
  tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°1 de Distribución de Frecuencias del Aspecto (°) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-1 21.54 10.27 3711 6.29 3711 58978 6.29 100
21.54 44.08 32.81 3005 5.1 6716 55267 11.39 93.71
44.08 66.61 55.35 3890 6.6 10606 52262 17.98 88.61
66.61 89.15 77.88 3913 6.63 14519 48372 24.62 82.02
89.15 111.69 100.42 4391 7.45 18910 44459 32.06 75.38
111.69 134.23 122.96 3746 6.35 22656 40068 38.41 67.94
134.23 156.77 145.5 4302 7.29 26958 36322 45.71 61.59
156.77 179.3 168.04 3965 6.72 30923 32020 52.43 54.29
179.3 201.84 190.57 4397 7.46 35320 28055 59.89 47.57
201.84 224.38 213.11 3715 6.3 39035 23658 66.19 40.11
224.38 246.92 235.65 4021 6.82 43056 19943 73 33.81
246.92 269.46 258.19 3708 6.29 46764 15922 79.29 27
269.46 292 280.73 3991 6.77 50755 12214 86.06 20.71
292 314.53 303.26 2958 5.02 53713 8223 91.07 13.94
314.53 337.07 325.8 3027 5.13 56740 5265 96.21 8.93
337.07 359.61 348.34 2238 3.79 58978 2238 100 3.79
TOTAL - - 58978 100 - - - -

3.2 Tabla con Límites Enteros

# Crear Dataframe
TDF_Int_Final <- data.frame(
  Li      = as.character(TDF_Enteros$Li),
  Ls      = as.character(TDF_Enteros$Ls),
  MC      = as.character(TDF_Enteros$MC),
  ni      = as.character(TDF_Enteros$ni),
  hi      = as.character(round(TDF_Enteros$hi, 2)),
  Ni_asc  = as.character(TDF_Enteros$Ni_asc),
  Ni_desc = as.character(TDF_Enteros$Ni_desc),
  Hi_asc  = as.character(round(TDF_Enteros$Hi_asc, 2)),
  Hi_desc = as.character(round(TDF_Enteros$Hi_desc, 2))
)

# Calcular Totales
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), round(sum(TDF_Enteros$hi), 2), "-", "-", "-", "-")
TDF_Int_Final <- rbind(TDF_Int_Final, totales_int)

# Generar GT
TDF_Int_Final %>%
  gt() %>%
  tab_header(title = md("**Tabla N°2 de Distribución de Frecuencias del Aspecto (°) de las Plantas Solares**")) %>%
  cols_label(
    Li = "Lim. Inf", 
    Ls = "Lim. Sup", 
    MC = "Marca Clase",
    ni = "Frec. Abs (ni)", 
    hi = "Frec. Rel (%)",
    Ni_asc = "Ni (Asc)", 
    Ni_desc = "Ni (Desc)",
    Hi_asc = "Hi Asc (%)", 
    Hi_desc = "Hi Desc (%)"
  ) %>%
  cols_align(align = "center", columns = everything()) %>%
  tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°2 de Distribución de Frecuencias del Aspecto (°) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-10 20 5 3548 6.02 3548 58978 6.02 100
20 50 35 4454 7.55 8002 55430 13.57 93.98
50 80 65 4955 8.4 12957 50976 21.97 86.43
80 110 95 5702 9.67 18659 46021 31.64 78.03
110 140 125 5432 9.21 24091 40319 40.85 68.36
140 170 155 5284 8.96 29375 34887 49.81 59.15
170 200 185 5629 9.54 35004 29603 59.35 50.19
200 230 215 5246 8.89 40250 23974 68.25 40.65
230 260 245 5059 8.58 45309 18728 76.82 31.75
260 290 275 5166 8.76 50475 13669 85.58 23.18
290 320 305 4227 7.17 54702 8503 92.75 14.42
320 350 335 3490 5.92 58192 4276 98.67 7.25
350 380 365 786 1.33 58978 786 100 1.33
TOTAL - - 58978 100 - - - -

4 Análisis Gráfico

4.1 Histogramas de Cantidad

par(mar = c(8, 7, 5, 2)) 
barplot(TDF_Enteros$ni, 
        names.arg = TDF_Enteros$MC,
        main = "",
        xlab = "", 
        ylab = "",
        col = "#DDA0DD",
        ylim = c(0, max(TDF_Enteros$ni) * 1.2),
        space = 0, 
        las = 2, 
        cex.names = 0.7)
mtext("Cantidad", side = 2, line = 4.5, cex = 1, font = 1)
mtext("Aspecto (°)", side = 1, line = 4)

mtext("Gráfica N°1: Distribución de Cantidad de Plantas Solares por Aspecto", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

par(mar = c(8, 7, 5, 2))
barplot(TDF_Enteros$ni, 
        main="",
        xlab = "",
        ylab = "",
        names.arg = TDF_Enteros$MC,
        col = "#DDA0DD",
        space = 0,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, 58771)) 
mtext("Cantidad", side = 2, line = 4.5, cex = 1, font = 1)
mtext("Aspecto (°)", side = 1, line = 4)

mtext("Gráfica N°2: Distribución de Cantidad de Plantas Solares por Aspecto", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

4.2 Histogramas Porcentuales

par(mar = c(8, 5, 5, 2))
bp3 <- barplot(TDF_Enteros$hi, 
        main = "",
        xlab = "",
        ylab = "Porcentaje (%)",
        col = "#DDA0DD",
        space = 0,
        names.arg = TDF_Enteros$MC,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, max(TDF_Enteros$hi) * 1.2))
mtext("Aspecto (°)", side = 1, line = 4)

mtext("Gráfica N°3: Distribución Porcentual de las Plantas Solares por Aspecto", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp3, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 2), "%"), 
     pos = 3, cex = 0.6, col = "black")

par(mar = c(8, 5, 4, 2))
bp4 <- barplot(TDF_Enteros$hi, 
        main = "",
        xlab = "",
        ylab = "Porcentaje (%)",
        col = "#DDA0DD",
        space = 0,
        names.arg = TDF_Enteros$MC,
        las = 2,
        cex.names = 0.7,
        ylim = c(0, 100))
mtext("Aspecto (°)", side = 1, line = 4)

mtext("Gráfica N°4: Distribución Porcentual de las Plantas Solares por Aspecto", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp4, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 2), "%"), 
     pos = 3, cex = 0.6, col = "black")

4.3 Diagrama de Cajas (Boxplot)

par(mar = c(5, 5, 4, 2))
boxplot(Variable, 
        horizontal = TRUE,
        col = "#DDA0DD",
        xlab = "Aspecto (°)",
        cex.main = 0.9,
        main = "Gráfica N°5: Distribución del Aspecto en las Plantas Solares")

4.4 Ojivas

par(mar = c(5, 5, 7, 10), xpd = TRUE)

# Coordenadas
x_asc <- TDF_Enteros$Ls
x_desc <- TDF_Enteros$Li
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc

# 1. Dibujar la Ascendente 
plot(x_asc, y_asc,
     type = "b", 
     main = "",
     xlab = "Aspecto (°)",
     ylab = "Frecuencia acumulada",
     col = "black",
     pch = 19, 
     xlim = c(min(TDF_Enteros$Li), max(x_asc)), 
     ylim = c(0, sum(TDF_Enteros$ni)),
     bty = "l"
)

# 2. Agregar la Descendente 
lines(x_desc, y_desc, col = "violet", type = "b", pch = 19)

grid()
mtext("Gráfica N°6: Ojivas Ascendentes y Descendentes de la\nDistribución del Aspecto en las Plantas Solares", 
      side = 3, 
      line = 3, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

legend("left", 
       legend = c("Ascendente", "Descendente"), 
       col = c("black", "violet"), 
       lty = 1, 
       pch = 1, 
       cex = 0.6, 
       inset = c(0.05, 0.05),
       bty = "n")

5 Indicadores Estadísticos

## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)

# Mediana
mediana <- round(median(Variable), 2)

# Moda
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")

## INDICADORES DE DISPERSIÓN
# Varianza
varianza <- var(Variable)

# Desviación Estándar
sd_val <- sd(Variable)

# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)

## INDICADORES DE FORMA
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)

# Curtosis
curtosis <- kurtosis(Variable)

# Outliers
Q1 <- quantile(Variable, 0.25)
Q3 <- quantile(Variable, 0.75)
IQR_val <- Q3 - Q1
lim_inf <- Q1 - 1.5 * IQR_val
lim_sup <- Q3 + 1.5 * IQR_val

outliers_data <- Variable[Variable < lim_inf | Variable > lim_sup]
num_outliers <- length(outliers_data)

if(num_outliers > 0){
  rango_outliers <- paste0(num_outliers, " [", round(min(outliers_data), 2), "; ", round(max(outliers_data), 2), "]")
} else {
  rango_outliers <- "0 [Sin Outliers]"
}

tabla_indicadores <- data.frame(
 "Variable" = c("Aspecto (°)"),
 "Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
 "X" = c(media),
 "Me" = c(mediana),
 "Mo" = c(moda_txt),
 "V" = c(varianza),
 "Sd" = c(sd_val),
 "Cv" = c(cv),
 "As" = c(asimetria),
 "K" = c(curtosis),
 "Outliers" = rango_outliers)

# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
 gt() %>%
 tab_header(title = md("**Tabla N°3 de Conclusiones de Aspecto de las Plantas Solares**")) %>%
 tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Variable = "Variable",
  Rango_MinMax = "Rango",
  X = "Media (X)",
  Me = "Mediana (Me)",
  Mo = "Moda (Mo)",
  V = "Varianza (V)",
  Sd = "Desv. Est. (Sd)",
  Cv = "C.V. (%)",
  As = "Asimetría (As)",
  K = "Curtosis (K)",
  Outliers = "Outliers [Intervalo]"
 ) %>%
 tab_options(
  heading.title.font.size = px(16),
  column_labels.background.color = "#F0F0F0"
 )

tabla_conclusiones_gt
Tabla N°3 de Conclusiones de Aspecto de las Plantas Solares
Variable Rango Media (X) Mediana (Me) Moda (Mo) Varianza (V) Desv. Est. (Sd) C.V. (%) Asimetría (As) Curtosis (K) Outliers [Intervalo]
Aspecto (°) [-1; 359.61] 171.59 170.67 95 9710.545 98.5421 57.43 0.03520019 -1.082285 0 [Sin Outliers]
Autor: Martin Sarmiento

6 Conclusiones

La variable “Aspecto” fluctúa entre -1° y 359.61° y sus valores se encuentran alrededor de 170.67°, con una desviación estándar de 98.5421, siendo una variable heterogénea, cuyos valores se concentran en la parte media alta de la variable sin la presencia de valores atípicos; por todo lo anterior, el comportamiento de la variable es irregular.