1 Configuración y Carga de Datos

##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####


#### VARIABLE ELEVACION ####
## DATASET ##
setwd("~/R/ELEVATION")
# Cargar dataset
Datos <- read.csv("Dataset_Mundial_Final.csv", sep = ";", dec = ",", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame':    58978 obs. of  29 variables:
##  $ ï..OBJECTID           : int  2 3 4 5 6 7 8 9 10 11 ...
##  $ code                  : chr  "00001-AFG-P" "00002-AFG-P" "00003-AFG-P" "00004-AFG-P" ...
##  $ plant_name            : chr  "Badghis Solar Power Plant" "Balkh solar farm" "Behsood solar farm" "Dab Pal 4 solar farm" ...
##  $ country               : chr  "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
##  $ operational_status    : chr  "cancelled - inferred 4 y" "cancelled - inferred 4 y" "cancelled - inferred 4 y" "shelved - inferred 2 y" ...
##  $ longitude             : num  62.9 67.1 70.4 66.2 65.7 ...
##  $ latitude              : num  35.1 36.7 34.4 33.8 31.7 ...
##  $ elevation             : int  918 359 629 2288 1060 1060 1392 398 410 1012 ...
##  $ area                  : num  6.74 10.72 487.73 111.8 1929.96 ...
##  $ size                  : chr  "Small" "Small" "Small" "Small" ...
##  $ slope                 : num  7.38 0.49 1.1 6.16 1.23 ...
##  $ slope_type            : chr  "Moderado" "Plano o casi plano" "Plano o casi plano" "Moderado" ...
##  $ curvature             : num  -0.024 0 0 0.045 -0.005 -0.005 -0.015 0 0 -0.009 ...
##  $ curvature_type        : chr  "Superficies cóncavas / Valles" "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies convexas / Crestas" ...
##  $ aspect                : num  96.8 358.5 36.2 305.8 248.4 ...
##  $ aspect_type           : chr  "East" "North" "Northeast" "Northwest" ...
##  $ dist_to_road          : num  7037.1 92.7 112.1 1705.3 115.8 ...
##  $ ambient_temperature   : num  14.4 17.88 21.32 8.86 19.64 ...
##  $ ghi                   : num  5.82 5.58 5.8 6.75 6.62 ...
##  $ humidity              : num  47.7 42.3 36.4 37.3 24.2 ...
##  $ wind_speed            : num  0.039 0.954 0.234 0.943 0.37 ...
##  $ wind_direction        : num  187.5 207.4 255.6 160.3 97.7 ...
##  $ dt_wind               : chr  "South" "Southwest" "West" "South" ...
##  $ solar_aptitude        : num  0.72 0.635 0.685 0.659 0.819 0.819 0.818 0.642 0.63 0.374 ...
##  $ solar_aptitude_rounded: int  7 6 7 7 8 8 8 6 6 4 ...
##  $ solar_aptittude_class : chr  "Alta" "Alta" "Alta" "Alta" ...
##  $ capacity              : num  32 40 60 3000 100 100 36 50 25 100 ...
##  $ optimal_tilt          : num  30 31 31.1 33 31 ...
##  $ pv_potential          : num  4.61 4.41 4.57 5.42 5.17 ...
# Cargamos las librerias
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(gt)
library(e1071)

2 Cálculo de Intervalos y Frecuencias

# Extraer variable
Variable <- na.omit(Datos$elevation)
N <- length(Variable)

# CÁLCULO LÍMITES DECIMALES
min_dec <- min(Variable)
max_dec <- max(Variable)
k_dec <- floor(1 + 3.322 * log10(N))
rango_dec <- max(Variable) - min(Variable)
amplitud_dec <- rango_dec / k_dec

# Cortes exactos
cortes_dec <- seq(min(Variable), max(Variable), length.out = k_dec + 1)
cortes_dec[length(cortes_dec)] <- max(Variable) + 0.0001

# Frecuencias
inter_dec <- cut(Variable, breaks = cortes_dec, include.lowest = TRUE, right = FALSE)
ni_dec <- as.vector(table(inter_dec))

# CÁLCULOS MATEMÁTICOS 
hi_dec <- (ni_dec / N) * 100
Ni_asc_dec <- cumsum(ni_dec)
Hi_asc_dec <- cumsum(hi_dec)
Ni_desc_dec <- rev(cumsum(rev(ni_dec)))
Hi_desc_dec <- rev(cumsum(rev(hi_dec)))

# Dataframe Decimal
TDF_Decimal <- data.frame(
  Li = cortes_dec[1:k_dec],
  Ls = cortes_dec[2:(k_dec+1)],
  MC = (cortes_dec[1:k_dec] + cortes_dec[2:(k_dec+1)]) / 2,
  ni = ni_dec,
  hi = hi_dec,
  Ni_asc = Ni_asc_dec,
  Ni_desc = Ni_desc_dec,
  Hi_asc = Hi_asc_dec,
  Hi_desc = Hi_desc_dec)


# CÁLCULO LÍMITES ENTEROS
BASE <- 10
min_int <- floor(min(Variable) / BASE) * BASE
max_int <- ceiling(max(Variable) / BASE) * BASE
k_int_sug <- floor(1 + 3.322 * log10(N))
Rango_int <- max_int - min_int
Amplitud_raw <- Rango_int / k_int_sug

Amplitud_int <- ceiling(Amplitud_raw / 10) * 10
if(Amplitud_int == 0) Amplitud_int <- 10

cortes_int <- seq(from = min_int, by = Amplitud_int, length.out = k_int_sug + 2)
cortes_int <- cortes_int[cortes_int <= (max_int + Amplitud_int)]

while(max(cortes_int) < max(Variable)) {
  cortes_int <- c(cortes_int, max(cortes_int) + Amplitud_int)
}

K_real <- length(cortes_int) - 1
lim_inf_int <- cortes_int[1:K_real]
lim_sup_int <- cortes_int[2:(K_real+1)]

# Frecuencias
inter_int <- cut(Variable, breaks = cortes_int, include.lowest = TRUE, right = FALSE)
ni_int <- as.vector(table(inter_int))

# CÁLCULOS MATEMÁTICOS 
hi_int <- (ni_int / N) * 100
Ni_asc_int <- cumsum(ni_int)
Hi_asc_int <- cumsum(hi_int)
Ni_desc_int <- rev(cumsum(rev(ni_int)))
Hi_desc_int <- rev(cumsum(rev(hi_int)))

# Dataframe Entero
TDF_Enteros <- data.frame(
  Li = lim_inf_int,
  Ls = lim_sup_int,
  MC = (lim_inf_int + lim_sup_int) / 2,
  ni = ni_int,
  hi = hi_int,
  Ni_asc = Ni_asc_int,
  Ni_desc = Ni_desc_int,
  Hi_asc = Hi_asc_int,
  Hi_desc = Hi_desc_int)

3 Tabla de Distribución de Frecuencias

3.1 Tabla con Límites Decimales

# Crear Dataframe 
TDF_Dec_Final <- data.frame(
  Li      = as.character(round(TDF_Decimal$Li, 2)),
  Ls      = as.character(round(TDF_Decimal$Ls, 2)),
  MC      = as.character(round(TDF_Decimal$MC, 2)),
  ni      = as.character(TDF_Decimal$ni),
  hi      = as.character(round(TDF_Decimal$hi, 2)),
  Ni_asc  = as.character(TDF_Decimal$Ni_asc),
  Ni_desc = as.character(TDF_Decimal$Ni_desc),
  Hi_asc  = as.character(round(TDF_Decimal$Hi_asc, 2)),
  Hi_desc = as.character(round(TDF_Decimal$Hi_desc, 2))
)

# Calcular Totales
totales_dec <- c("TOTAL", "-", "-", sum(TDF_Decimal$ni), round(sum(TDF_Decimal$hi), 2), "-", "-", "-", "-")
TDF_Dec_Final <- rbind(TDF_Dec_Final, totales_dec)

# Generar GT
TDF_Dec_Final %>%
 gt() %>%
 tab_header(title = md("**Tabla N°1 de Distribución de Frecuencias de Elevación (m.s.n.m.) de las Plantas Solares**")) %>%
  tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Li = "Lim. Inf", 
  Ls = "Lim. Sup", 
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)", 
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)", 
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)", 
  Hi_desc = "Hi Desc (%)"
 ) %>%
 cols_align(align = "center", columns = everything()) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°1 de Distribución de Frecuencias de Elevación (m.s.n.m.) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-378 -0.88 -189.44 255 0.43 255 58978 0.43 100
-0.88 376.25 187.69 42089 71.36 42344 58723 71.8 99.57
376.25 753.38 564.81 8740 14.82 51084 16634 86.62 28.2
753.38 1130.5 941.94 3224 5.47 54308 7894 92.08 13.38
1130.5 1507.62 1319.06 2245 3.81 56553 4670 95.89 7.92
1507.62 1884.75 1696.19 1095 1.86 57648 2425 97.74 4.11
1884.75 2261.88 2073.31 461 0.78 58109 1330 98.53 2.26
2261.88 2639 2450.44 270 0.46 58379 869 98.98 1.47
2639 3016.12 2827.56 269 0.46 58648 599 99.44 1.02
3016.12 3393.25 3204.69 124 0.21 58772 330 99.65 0.56
3393.25 3770.38 3581.81 72 0.12 58844 206 99.77 0.35
3770.38 4147.5 3958.94 59 0.1 58903 134 99.87 0.23
4147.5 4524.62 4336.06 39 0.07 58942 75 99.94 0.13
4524.62 4901.75 4713.19 25 0.04 58967 36 99.98 0.06
4901.75 5278.88 5090.31 10 0.02 58977 11 100 0.02
5278.88 5656 5467.44 1 0 58978 1 100 0
TOTAL - - 58978 100 - - - -
Autor: Martin Sarmiento

3.2 Tabla con Límites Enteros

# Crear Dataframe 
TDF_Int_Final <- data.frame(
  Li      = as.character(TDF_Enteros$Li),
  Ls      = as.character(TDF_Enteros$Ls),
  MC      = as.character(TDF_Enteros$MC),
  ni      = as.character(TDF_Enteros$ni),
  hi      = as.character(round(TDF_Enteros$hi, 2)),
  Ni_asc  = as.character(TDF_Enteros$Ni_asc),
  Ni_desc = as.character(TDF_Enteros$Ni_desc),
  Hi_asc  = as.character(round(TDF_Enteros$Hi_asc, 2)),
  Hi_desc = as.character(round(TDF_Enteros$Hi_desc, 2))
)

# Calcular Totales
totales_int <- c("TOTAL", "-", "-", sum(TDF_Enteros$ni), round(sum(TDF_Enteros$hi), 2), "-", "-", "-", "-")
TDF_Int_Final <- rbind(TDF_Int_Final, totales_int)

# Generar GT
TDF_Int_Final %>%
 gt() %>%
 tab_header(title = md("**Tabla N°2 de Distribución de Frecuencias de Elevación (m.s.n.m.) de las Plantas Solares**")) %>%
  tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Li = "Lim. Inf", 
  Ls = "Lim. Sup", 
  MC = "Marca Clase",
  ni = "Frec. Abs (ni)", 
  hi = "Frec. Rel (%)",
  Ni_asc = "Ni (Asc)", 
  Ni_desc = "Ni (Desc)",
  Hi_asc = "Hi Asc (%)", 
  Hi_desc = "Hi Desc (%)"
 ) %>%
 cols_align(align = "center", columns = everything()) %>%
 tab_options(heading.title.font.size = px(14), column_labels.background.color = "#F0F0F0")
Tabla N°2 de Distribución de Frecuencias de Elevación (m.s.n.m.) de las Plantas Solares
Lim. Inf Lim. Sup Marca Clase Frec. Abs (ni) Frec. Rel (%) Ni (Asc) Ni (Desc) Hi Asc (%) Hi Desc (%)
-380 0 -190 255 0.43 255 58978 0.43 100
0 380 190 42208 71.57 42463 58723 72 99.57
380 760 570 8700 14.75 51163 16515 86.75 28
760 1140 950 3193 5.41 54356 7815 92.16 13.25
1140 1520 1330 2241 3.8 56597 4622 95.96 7.84
1520 1900 1710 1076 1.82 57673 2381 97.79 4.04
1900 2280 2090 456 0.77 58129 1305 98.56 2.21
2280 2660 2470 256 0.43 58385 849 98.99 1.44
2660 3040 2850 287 0.49 58672 593 99.48 1.01
3040 3420 3230 103 0.17 58775 306 99.66 0.52
3420 3800 3610 70 0.12 58845 203 99.77 0.34
3800 4180 3990 62 0.11 58907 133 99.88 0.23
4180 4560 4370 37 0.06 58944 71 99.94 0.12
4560 4940 4750 25 0.04 58969 34 99.98 0.06
4940 5320 5130 8 0.01 58977 9 100 0.02
5320 5700 5510 1 0 58978 1 100 0
TOTAL - - 58978 100 - - - -
Autor: Martin Sarmiento

4 Análisis Gráfico

4.1 Histogramas de Cantidad

par(mar = c(8, 7, 5, 2)) 
barplot(TDF_Enteros$ni, 
        names.arg = TDF_Enteros$MC,
        main = "",
        xlab = "", 
        ylab = "",
        col = "#FFCC99",
        ylim = c(0, max(TDF_Enteros$ni) * 1.2),
        space = 0, 
        las = 2, 
        cex.names = 0.7)
mtext("Cantidad", side = 2, line = 4.5, cex = 1, font = 1)
mtext("Elevación (m.s.n.m.)", side = 1, line = 4)

mtext("Gráfica N°1: Distribución de Cantidad de Plantas Solares por Elevación", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

par(mar = c(8, 7, 4, 2))
barplot(TDF_Enteros$ni, 
        main="",
        xlab = "",
        ylab = "",
        names.arg = TDF_Enteros$MC,
        col = "#FFCC99",
        ylim = c(0, 58771),
        space = 0,
        cex.names = 0.7,
        las = 2) 
mtext("Cantidad", side = 2, line = 4.5, cex = 1, font = 1)
mtext("Elevación (m.s.n.m.)", side = 1, line = 4)

mtext("Gráfica N°2: Distribución de Cantidad de Plantas Solares por Elevación", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

4.2 Histogramas Porcentuales

par(mar = c(8, 5, 5, 2))
bp3 <- barplot(TDF_Enteros$hi, 
        main = "",
        xlab = "",
        ylab = "Porcentaje (%)",
        col = "#FFCC99",
        space = 0,
        names.arg = TDF_Enteros$MC,
        cex.names = 0.7,
        las = 2,
        ylim = c(0, max(TDF_Enteros$hi) * 1.2))
mtext("Elevación (m.s.n.m.)", side = 1, line = 4)

mtext("Gráfica N°3: Distribución Porcentual de las Plantas Solares por Elevación", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp3, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 2), "%"), 
     pos = 3, cex = 0.6, col = "black")

par(mar = c(8, 5, 5, 2))
bp4 <- barplot(TDF_Enteros$hi, 
        main = "",
        xlab = "",
        ylab = "Porcentaje (%)",
        col = "#FFCC99",
        space = 0,
        names.arg = TDF_Enteros$MC,
        las = 2,
        cex.names = 0.7,
        ylim = c(0, 100))
mtext("Elevación (m.s.n.m.)", side = 1, line = 4)

mtext("Gráfica N°4: Distribución Porcentual de las Plantas Solares por Elevación", 
      side = 3, 
      line = 2, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

text(x = bp4, 
     y = TDF_Enteros$hi, 
     labels = paste0(round(TDF_Enteros$hi, 2), "%"), 
     pos = 3, cex = 0.6, col = "black")

4.3 Diagrama de Cajas (Boxplot)

par(mar = c(5, 5, 4, 2))
boxplot(Variable, 
        horizontal = TRUE,
        col = "#FFCC99",
        xlab = "Elevación (m.s.n.m.)",
        cex.main = 0.9,
         main = "Gráfica N°5: Distribución de la Elevación en las Plantas Solares")

4.4 Ojivas

par(mar = c(5, 5, 7, 10), xpd = TRUE)

# Coordenadas
x_asc <- TDF_Enteros$Ls
x_desc <- TDF_Enteros$Li
y_asc <- TDF_Enteros$Ni_asc
y_desc <- TDF_Enteros$Ni_desc

# 1. Dibujar la Ascendente 
plot(x_asc, y_asc,
     type = "b", 
     main = "",
     xlab = "Elevación (m.s.n.m.)",
     ylab = "Frecuencia acumulada",
     col = "black",
     pch = 19, 
     xlim = c(min(x_desc), max(x_asc)), 
     ylim = c(0, sum(TDF_Enteros$ni)),
     bty = "l")

# 2. Agregar la Descendente 
lines(x_desc, y_desc, col = "orange", type = "b", pch = 19)

grid()
mtext("Gráfica N°6: Ojivas Ascendentes y Descendentes de la\nDistribución de la Elevación en las Plantas Solares", 
      side = 3, 
      line = 3, 
      adj = 0.5, 
      cex = 0.9, 
      font = 2)

legend("right", 
       legend = c("Ascendente", "Descendente"), 
       col = c("black", "orange"), 
       lty = 1, 
       pch = 1, 
       cex = 0.6, 
       inset = c(0.05, 0.05),
       bty = "n")

5 Indicadores Estadísticos

## INDICADORES DE TENDENCIA CENTRAL
# Media aritmética
media <- round(mean(Variable), 2)

# Mediana
mediana <- round(median(Variable), 2)

# Moda
max_frecuencia <- max(TDF_Enteros$ni)
moda_vals <- TDF_Enteros$MC[TDF_Enteros$ni == max_frecuencia]
moda_txt <- paste(round(moda_vals, 2), collapse = ", ")

## INDICADORES DE DISPERSIÓN
# Varianza
varianza <- var(Variable)

# Desviación Estándar
sd_val <- sd(Variable)

# Coeficiente de Variación
cv <- round((sd_val / abs(media)) * 100, 2)

## INDICADORES DE FORMA
# Coeficiente de Asimetría
asimetria <- skewness(Variable, type = 2)

# Curtosis
curtosis <- kurtosis(Variable)

# Outliers
Q1 <- quantile(Variable, 0.25)
Q3 <- quantile(Variable, 0.75)
IQR_val <- Q3 - Q1
lim_inf <- Q1 - 1.5 * IQR_val
lim_sup <- Q3 + 1.5 * IQR_val

outliers_data <- Variable[Variable < lim_inf | Variable > lim_sup]
num_outliers <- length(outliers_data)

if(num_outliers > 0){
  rango_outliers <- paste0(num_outliers, " [", round(min(outliers_data), 2), "; ", round(max(outliers_data), 2), "]")
} else {
  rango_outliers <- "0 [Sin Outliers]"
}

tabla_indicadores <- data.frame(
 "Variable" = c("Elevación (m.s.n.m.)"),
 "Rango_MinMax" = paste0("[", round(min(Variable), 2), "; ", round(max(Variable), 2), "]"),
 "X" = c(media),
 "Me" = c(mediana),
 "Mo" = c(moda_txt),
 "V" = c(varianza),
 "Sd" = c(sd_val),
 "Cv" = c(cv),
 "As" = c(asimetria),
 "K" = c(curtosis),
 "Outliers" = rango_outliers)

# Generar Tabla GT
tabla_conclusiones_gt <- tabla_indicadores %>%
 gt() %>%
 tab_header(title = md("**Tabla N°3 de Conclusiones de Elevación de las Plantas Solares**")) %>%
 tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
 cols_label(
  Variable = "Variable",
  Rango_MinMax = "Rango",
  X = "Media (X)",
  Me = "Mediana (Me)",
  Mo = "Moda (Mo)",
  V = "Varianza (V)",
  Sd = "Desv. Est. (Sd)",
  Cv = "C.V. (%)",
  As = "Asimetría (As)",
  K = "Curtosis (K)",
  Outliers = "Outliers [Intervalo]"
 ) %>%
 tab_options(
  heading.title.font.size = px(16),
  column_labels.background.color = "#F0F0F0"
 )

tabla_conclusiones_gt
Tabla N°3 de Conclusiones de Elevación de las Plantas Solares
Variable Rango Media (X) Mediana (Me) Moda (Mo) Varianza (V) Desv. Est. (Sd) C.V. (%) Asimetría (As) Curtosis (K) Outliers [Intervalo]
Elevación (m.s.n.m.) [-378; 5656] 353.62 156 190 277349.6 526.6399 148.93 3.180583 13.98931 5459 [1017; 5656]
Autor: Martin Sarmiento

6 Conclusiones

La variable “Elevación” fluctúa entre -378 y 5656 m.s.n.m. y sus valores se encuentran alrededor de 156 m.s.n.m., con una desviación estándar de 526.6399, siendo una variable muy heterogénea, cuyos valores se concentran en la parte media baja de la variable con la agregación de valores atípicos de 5459 outliers; por todo lo anterior, el comportamiento de la variable es muy irregular.