total_n = nrow(df_cbzs)
Total N = 200
Preregistered exclusions:
elg_n = nrow(df_cbzs_elg)
df_cbzs %>%
group_by(att_1,att_2) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
arrange(desc(Perc)) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
## `summarise()` has grouped output by 'att_1'. You can override using the
## `.groups` argument.
| att_1 | att_2 | N | Perc |
|---|---|---|---|
| 1 | 1 | 193 | 96.5 |
| 1 | 0 | 7 | 3.5 |
Eligible N = 193
df_cbzs_elg %>%
mutate(gender = ifelse(is.na(gender) | gender == "","other",gender)) %>%
group_by(gender) %>%
summarise(N = n()) %>%
ungroup() %>%
mutate(Perc = round(100*(N/sum(N)),2)) %>%
ungroup() %>%
arrange(desc(Perc)) %>%
kbl() %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| gender | N | Perc |
|---|---|---|
| woman | 107 | 55.44 |
| man | 84 | 43.52 |
| other | 2 | 1.04 |
| race | N | Perc |
|---|---|---|
| White | 184 | 95.34 |
| multiracial | 9 | 4.66 |
Mean age: 42.83.
median_income_num <- df_cbzs_elg %>%
mutate(income_num = as.numeric(income)) %>%
summarise(median = median(income_num, na.rm = TRUE)) %>%
pull(median)
df_cbzs_elg %>%
ggplot(aes(x = income)) +
geom_bar() +
geom_vline(xintercept = median_income_num,
color = "lightblue", linetype = "dashed") +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black", face = "bold"),
axis.title.x = element_blank(),
axis.title.y = element_blank()) +
coord_flip()
| edu | N | Perc |
|---|---|---|
| noHS | 1 | 0.52 |
| GED | 52 | 26.94 |
| 2yearColl | 19 | 9.84 |
| 4yearColl | 88 | 45.60 |
| MA | 24 | 12.44 |
| PHD | 7 | 3.63 |
| NA | 2 | 1.04 |
| ses | N | Perc |
|---|---|---|
| Lower Class | 15 | 7.77 |
| Lower Middle Class | 73 | 37.82 |
| Middle Class | 89 | 46.11 |
| Upper Middle Class | 15 | 7.77 |
| Upper Class | 1 | 0.52 |
To what extent do you identify as working-class? (0 = Not at All Working-Class; 50 = Moderately Working-Class; 100 = Very Strongly Working-Class)
df_cbzs_elg %>%
ggplot(aes(x = class_id)) +
geom_histogram(fill = "lightblue",
binwidth = 5,
color = NA) +
scale_x_continuous(breaks = seq(0,100,10),
limits = c(-10,110)) +
ylab("count") +
geom_vline(xintercept = mean(df_cbzs_elg$class_id,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
Participants were asked about the extent to which they subscribe to the following ideologies on a scale of 1-7 (select NA if unfamiliar): Conservatism, Liberalism, Democratic Socialism, Libertarianism, Progressivism.
means <- df_cbzs_elg %>%
dplyr::select(PID,ideo_con:ideo_prog) %>%
pivot_longer(-PID,
names_to = "ideo",
values_to = "score") %>%
filter(!is.na(score)) %>%
group_by(ideo) %>%
summarise(score = mean(score)) %>%
ungroup()
df_cbzs_elg %>%
dplyr::select(PID,ideo_con:ideo_prog) %>%
pivot_longer(-PID,
names_to = "ideo",
values_to = "score") %>%
filter(!is.na(score)) %>%
ggplot() +
geom_density(aes(x = score), fill = "lightblue",color = NA) +
scale_x_continuous(limits = c(1,7),
breaks = seq(1,7,1)) +
geom_vline(data = means,mapping = aes(xintercept = score),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold")) +
facet_wrap(~ideo,nrow = 2)
| party_id | N | Perc |
|---|---|---|
| Independent | 70 | 36.27 |
| Democrat | 63 | 32.64 |
| Republican | 60 | 31.09 |
alpha = 0.91
df_cbzs_elg %>%
ggplot(aes(x = zs_class)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$zs_class,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
alpha = 0.84
df_cbzs_elg %>%
ggplot(aes(x = zs_race_b)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$zs_race_b,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
alpha = 0.86
df_cbzs_elg %>%
ggplot(aes(x = zs_race_a)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$zs_race_a,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
alpha = 0.82
df_cbzs_elg %>%
ggplot(aes(x = zs_race_h)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$zs_race_h,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
alpha = 0.66
df_cbzs_elg %>%
ggplot(aes(x = crs)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$crs,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
Participants saw one of the following policies and indicated their support for it (1 = Strongly Oppose to 7 = Strongly Support)
Minimum wage increase
Congress has not increased the federal minimum wage, currently set at $7.25, since 2009. Some Congresspeople are proposing a policy that would gradually raise the federal minimum wage to $20 an hour by 2028. After 2028, the minimum wage would be adjusted each year to keep pace with growth in the median wage, a measure of wages for typical workers.
Student debt relief
Some Congresspeople are proposing a policy that would help to address the student loan debt crisis by forgiving up to $50,000 in loans per borrower. Approximately 42 million Americans, or about 1 in 6 American adults, owe a cumulative $1.6 trillion in student loans. Student loans are now the second-largest slice of household debt after mortgages, bigger than credit card debt.
Housing
Some Congresspeople are proposing a housing affordability policy that would help ensure that every American has a place to live. The policy would allow for smaller, lower cost homes like duplexes, townhouses, and garden apartments to be built and developed, allowing new nonprofit homes and reducing overall housing prices.
Climate change
Some Congresspeople are proposing a Green New Deal bill which would phase out the use of fossil fuels, with the government providing clean energy jobs for people who can’t find employment in the private sector. All jobs would pay at least $20 an hour, and include healthcare benefits and collective bargaining rights.
df_cbzs_elg %>%
ggplot(aes(x = support)) +
geom_histogram(fill = "lightblue",
binwidth = 1,
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(0,8)) +
ylab("count") +
geom_vline(xintercept = mean(df_cbzs_elg$support,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
r = 0.49
df_cbzs_elg %>%
ggplot(aes(x = lf_b)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$lf_b,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
r = 0.59
df_cbzs_elg %>%
ggplot(aes(x = lf_a)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$lf_a,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
r = 0.59
df_cbzs_elg %>%
ggplot(aes(x = lf_h)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$lf_h,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
r = 0.86
df_cbzs_elg %>%
ggplot(aes(x = similar)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$similar,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
alpha = 0.94
df_cbzs_elg %>%
ggplot(aes(x = zs_race_wilkins)) +
geom_density(fill = "lightblue",
color = NA) +
scale_x_continuous(breaks = seq(1,7,1),
limits = c(1,7)) +
ylab("density") +
geom_vline(xintercept = mean(df_cbzs_elg$zs_race_wilkins,na.rm = T),
color = "black",
linetype = "dashed",
size = 1.1) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks = element_blank(),
axis.line = element_line(color = "grey66"),
axis.text.y = element_text(color = "black"),
axis.text.x = element_text(color = "black",
face = "bold"),
axis.title.x = element_text(color = "black",
face = "bold"))
Predictor: Class ZSB
Mediator: Cross-race solidarity
Outcome: Support for policy
Bootstraps: 10,000
form.m <- reformulate("zs_class", response = "crs")
form.y <- reformulate(c("zs_class", "crs"), response = "support")
# Fit linear models
m.fit <- lm(form.m, data = df_cbzs_elg) # a-path
y.fit <- lm(form.y, data = df_cbzs_elg) # b and c'-paths
# Fit outcome model WITHOUT mediator to get c-path (total effect)
y.fit.total <- lm(
reformulate("zs_class", response = "support"),
data = df_cbzs_elg
)
# Mediation analysis with bootstrapping (10,000 sims)
med.fit <- mediation::mediate(
model.m = m.fit,
model.y = y.fit,
treat = "zs_class",
mediator = "crs",
boot = TRUE,
sims = 10000
)
med_tbl <- tibble(
Effect = c("ACME (indirect)", "ADE (direct)",
"Total Effect", "Prop. Mediated"),
Estimate = c(med.fit$d0, med.fit$z0,
med.fit$tau.coef, med.fit$n0),
CI.lower = c(med.fit$d0.ci[1], med.fit$z0.ci[1],
med.fit$tau.ci[1], med.fit$n0.ci[1]),
CI.upper = c(med.fit$d0.ci[2], med.fit$z0.ci[2],
med.fit$tau.ci[2], med.fit$n0.ci[2]),
p.value = c(med.fit$d0.p, med.fit$z0.p,
med.fit$tau.p, med.fit$n0.p)
)
kbl(med_tbl) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| Effect | Estimate | CI.lower | CI.upper | p.value |
|---|---|---|---|---|
| ACME (indirect) | 0.0492645 | -0.0075436 | 0.1192509 | 0.0888 |
| ADE (direct) | 0.3070470 | 0.1400034 | 0.4729324 | 0.0002 |
| Total Effect | 0.3563115 | 0.1999013 | 0.5106287 | 0.0000 |
| Prop. Mediated | 0.1382624 | -0.0217287 | 0.3912559 | 0.0888 |
# Helper to generate significance stars
p_stars <- function(p) {
if (p < .001) return("***")
if (p < .01) return("**")
if (p < .05) return("*")
return("")
}
# Extract coefficients & p-values
a_coef <- coef(m.fit)["zs_class"]
a_p <- summary(m.fit)$coefficients["zs_class", "Pr(>|t|)"]
b_coef <- coef(y.fit)["crs"]
b_p <- summary(y.fit)$coefficients["crs", "Pr(>|t|)"]
cprime <- coef(y.fit)["zs_class"]
cprime_p <- summary(y.fit)$coefficients["zs_class", "Pr(>|t|)"]
c_total <- coef(y.fit.total)["zs_class"]
c_total_p <- summary(y.fit.total)$coefficients["zs_class", "Pr(>|t|)"]
# Paste coefficient + stars
a_label <- paste0("a = ", round(a_coef, 3), p_stars(a_p))
b_label <- paste0("b = ", round(b_coef, 3), p_stars(b_p))
cprime_label <- paste0("c' = ", round(cprime, 3), p_stars(cprime_p))
c_label <- paste0("c = ", round(c_total, 3), p_stars(c_total_p))
# Plot
ggplot() +
xlim(0, 3) + ylim(0, 2) +
# Nodes
annotate("text", x = 0.5, y = 1, label = "zs_class", fontface = "bold") +
annotate("text", x = 1.5, y = 1, label = "crs", fontface = "bold") +
annotate("text", x = 2.5, y = 1, label = "support", fontface = "bold") +
# a-path (X → M)
annotate("segment",
x = 0.7, xend = 1.3, y = 1, yend = 1,
arrow = arrow(length = unit(0.20, "cm"))) +
annotate("text", x = 1.0, y = 1.15, label = a_label) +
# b-path (M → Y)
annotate("segment",
x = 1.7, xend = 2.3, y = 1, yend = 1,
arrow = arrow(length = unit(0.20, "cm"))) +
annotate("text", x = 2.0, y = 1.15, label = b_label) +
# c'-path (direct effect)
annotate("segment",
x = 0.5, xend = 2.5, y = 0.9, yend = 0.9,
arrow = arrow(length = unit(0.20, "cm"))) +
annotate("text", x = 1.5, y = 0.75, label = cprime_label) +
# c-path (total effect, dashed)
annotate("segment",
x = 0.5, xend = 2.5, y = 1.1, yend = 1.1,
linetype = "dashed",
arrow = arrow(length = unit(0.20, "cm"))) +
annotate("text", x = 1.5, y = 1.25, label = c_label) +
theme_void()
Predictor: Class ZSB
Moderator: Race ZSB: Black
Outcome: Cross-Race Solidarity
m1 <- lm(crs ~ zs_class*zs_race_b,data = df_cbzs_elg)
eta_table <- eta_squared(m1)
etas_for_table <- c(NA,eta_table$Eta2)
apa_lm <- apa_print(m1)
table_for_print <- apa_lm$table %>%
mutate(eta2 = round(etas_for_table,3))
kbl(table_for_print) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value | eta2 |
|---|---|---|---|---|---|---|
| Intercept | 5.09 | [4.21, 5.97] | 11.42 | 189 | < .001 | NA |
| Zs class | 0.18 | [0.02, 0.35] | 2.23 | 189 | .027 | 0.134 |
| Zs race b | -0.43 | [-0.81, -0.04] | -2.20 | 189 | .029 | 0.121 |
| Zs class \(\times\) Zs race b | 0.03 | [-0.04, 0.10] | 0.82 | 189 | .415 | 0.004 |
interact_plot(m1,
pred = "zs_class",
modx = "zs_race_b",
interval = T)
Predictor: Class ZSB
Moderator: Race ZSB: Asian
Outcome: Cross-Race Solidarity
m1 <- lm(crs ~ zs_class*zs_race_a,data = df_cbzs_elg)
eta_table <- eta_squared(m1)
etas_for_table <- c(NA,eta_table$Eta2)
apa_lm <- apa_print(m1)
table_for_print <- apa_lm$table %>%
mutate(eta2 = round(etas_for_table,3))
kbl(table_for_print) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value | eta2 |
|---|---|---|---|---|---|---|
| Intercept | 5.11 | [4.22, 5.99] | 11.35 | 189 | < .001 | NA |
| Zs class | 0.15 | [-0.01, 0.32] | 1.83 | 189 | .069 | 0.128 |
| Zs race a | -0.42 | [-0.79, -0.06] | -2.28 | 189 | .024 | 0.071 |
| Zs class \(\times\) Zs race a | 0.04 | [-0.03, 0.11] | 1.22 | 189 | .226 | 0.008 |
interact_plot(m1,
pred = "zs_class",
modx = "zs_race_a",
interval = T)
Predictor: Class ZSB
Moderator: Race ZSB: Hispanic
Outcome: Cross-Race Solidarity
m1 <- lm(crs ~ zs_class*zs_race_h,data = df_cbzs_elg)
eta_table <- eta_squared(m1)
etas_for_table <- c(NA,eta_table$Eta2)
apa_lm <- apa_print(m1)
table_for_print <- apa_lm$table %>%
mutate(eta2 = round(etas_for_table,3))
kbl(table_for_print) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value | eta2 |
|---|---|---|---|---|---|---|
| Intercept | 5.10 | [4.23, 5.96] | 11.61 | 189 | < .001 | NA |
| Zs class | 0.18 | [0.02, 0.34] | 2.20 | 189 | .029 | 0.133 |
| Zs race h | -0.40 | [-0.77, -0.04] | -2.19 | 189 | .030 | 0.116 |
| Zs class \(\times\) Zs race h | 0.03 | [-0.04, 0.10] | 0.77 | 189 | .445 | 0.003 |
interact_plot(m1,
pred = "zs_class",
modx = "zs_race_h",
interval = T)
Predictor: Class ZSB
Moderator: Race ZSB: Black
Outcome: Linked fate: Black
m1 <- lm(lf_b ~ zs_class*zs_race_b,data = df_cbzs_elg)
eta_table <- eta_squared(m1)
etas_for_table <- c(NA,eta_table$Eta2)
apa_lm <- apa_print(m1)
table_for_print <- apa_lm$table %>%
mutate(eta2 = round(etas_for_table,3))
kbl(table_for_print) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value | eta2 |
|---|---|---|---|---|---|---|
| Intercept | 4.50 | [3.36, 5.64] | 7.80 | 189 | < .001 | NA |
| Zs class | 0.18 | [-0.03, 0.39] | 1.71 | 189 | .089 | 0.045 |
| Zs race b | -0.14 | [-0.64, 0.35] | -0.56 | 189 | .575 | 0.031 |
| Zs class \(\times\) Zs race b | -0.01 | [-0.10, 0.09] | -0.13 | 189 | .898 | 0.000 |
interact_plot(m1,
pred = "zs_class",
modx = "zs_race_b",
interval = T)
Predictor: Class ZSB
Moderator: Race ZSB: Asian
Outcome: Linked fate: Asian
m1 <- lm(lf_a ~ zs_class*zs_race_a,data = df_cbzs_elg)
eta_table <- eta_squared(m1)
etas_for_table <- c(NA,eta_table$Eta2)
apa_lm <- apa_print(m1)
table_for_print <- apa_lm$table %>%
mutate(eta2 = round(etas_for_table,3))
kbl(table_for_print) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value | eta2 |
|---|---|---|---|---|---|---|
| Intercept | 4.86 | [3.71, 6.01] | 8.31 | 189 | < .001 | NA |
| Zs class | 0.09 | [-0.13, 0.30] | 0.80 | 189 | .424 | 0.061 |
| Zs race a | -0.42 | [-0.90, 0.05] | -1.76 | 189 | .080 | 0.016 |
| Zs class \(\times\) Zs race a | 0.06 | [-0.03, 0.15] | 1.30 | 189 | .196 | 0.009 |
interact_plot(m1,
pred = "zs_class",
modx = "zs_race_a",
interval = T)
Predictor: Class ZSB
Moderator: Race ZSB: Hispanic
Outcome: Linked fate: Hispanic
m1 <- lm(lf_h ~ zs_class*zs_race_h,data = df_cbzs_elg)
eta_table <- eta_squared(m1)
etas_for_table <- c(NA,eta_table$Eta2)
apa_lm <- apa_print(m1)
table_for_print <- apa_lm$table %>%
mutate(eta2 = round(etas_for_table,3))
kbl(table_for_print) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value | eta2 |
|---|---|---|---|---|---|---|
| Intercept | 5.26 | [4.10, 6.43] | 8.89 | 189 | < .001 | NA |
| Zs class | 0.01 | [-0.20, 0.23] | 0.14 | 189 | .893 | 0.039 |
| Zs race h | -0.50 | [-0.99, -0.01] | -2.03 | 189 | .044 | 0.016 |
| Zs class \(\times\) Zs race h | 0.07 | [-0.02, 0.17] | 1.58 | 189 | .116 | 0.013 |
interact_plot(m1,
pred = "zs_class",
modx = "zs_race_h",
interval = T)
Predictor: Class ZSB
Moderator: Race ZSB Wilkins
Outcome: Cross-Race Class Solidarity
m1 <- lm(crs ~ zs_class*zs_race_wilkins,data = df_cbzs_elg)
eta_table <- eta_squared(m1)
etas_for_table <- c(NA,eta_table$Eta2)
apa_lm <- apa_print(m1)
table_for_print <- apa_lm$table %>%
mutate(eta2 = round(etas_for_table,3))
kbl(table_for_print) %>%
kable_styling(bootstrap_options = "hover",
full_width = F,
position = "left")
| term | estimate | conf.int | statistic | df | p.value | eta2 |
|---|---|---|---|---|---|---|
| Intercept | 5.01 | [4.07, 5.96] | 10.47 | 189 | < .001 | NA |
| Zs class | 0.19 | [0.02, 0.36] | 2.17 | 189 | .031 | 0.132 |
| Zs race wilkins | -0.26 | [-0.60, 0.08] | -1.51 | 189 | .133 | 0.106 |
| Zs class \(\times\) Zs race wilkins | 0.00 | [-0.06, 0.07] | 0.06 | 189 | .952 | 0.000 |
interact_plot(m1,
pred = "zs_class",
modx = "zs_race_wilkins",
interval = T)