#< # Instalar paquetes y llamar librerías

#install.packages("neuralnet")
library(neuralnet)
#install.packages("neuralnet")
library(datasets)
#install.packages("DataExplorer")
library(DataExplorer)
#install.packages("caret")
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice

Crear la base de datos

df <- data.frame(iris)

Analisis exploratorio

summary(df)
##   Sepal.Length    Sepal.Width     Petal.Length    Petal.Width   
##  Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
##  1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
##  Median :5.800   Median :3.000   Median :4.350   Median :1.300  
##  Mean   :5.843   Mean   :3.057   Mean   :3.758   Mean   :1.199  
##  3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
##  Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
##        Species  
##  setosa    :50  
##  versicolor:50  
##  virginica :50  
##                 
##                 
## 
str(df)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
head(df)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa
boxplot(df$Sepal.Length)

#create_report(df)
plot_missing(df)
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## ℹ The deprecated feature was likely used in the DataExplorer package.
##   Please report the issue at
##   <https://github.com/boxuancui/DataExplorer/issues>.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

plot_histogram(df)

plot_correlation(df)

Partir datos 80-20

set.seed(123)
reglones_entrenamiento <- createDataPartition(df$Species, p=0.8, list=FALSE)
entrenamiento <- df[reglones_entrenamiento, ]
prueba <- iris[-reglones_entrenamiento, ]

Modelo de redes neuronales artificiales

modelo <- train(Species~., data=entrenamiento,
                method= "nnet",
                preProcess =c("scale","center"),
                trControl =trainControl(method = "cv", number=10)
                )
## # weights:  11
## initial  value 137.158154 
## iter  10 value 83.679659
## iter  20 value 49.940615
## final  value 49.908817 
## converged
## # weights:  27
## initial  value 116.394990 
## iter  10 value 6.186241
## iter  20 value 0.260622
## iter  30 value 0.000744
## final  value 0.000077 
## converged
## # weights:  43
## initial  value 147.341272 
## iter  10 value 20.723909
## iter  20 value 1.711652
## iter  30 value 0.002668
## final  value 0.000059 
## converged
## # weights:  11
## initial  value 121.560247 
## iter  10 value 65.949471
## iter  20 value 55.881751
## iter  30 value 44.683010
## iter  40 value 44.159606
## iter  40 value 44.159606
## iter  40 value 44.159606
## final  value 44.159606 
## converged
## # weights:  27
## initial  value 162.871678 
## iter  10 value 31.973292
## iter  20 value 21.643843
## iter  30 value 21.176664
## iter  40 value 21.175187
## final  value 21.175184 
## converged
## # weights:  43
## initial  value 124.403113 
## iter  10 value 22.493781
## iter  20 value 18.970819
## iter  30 value 18.776926
## iter  40 value 18.751512
## iter  50 value 18.594955
## iter  60 value 18.433573
## iter  70 value 18.406314
## final  value 18.406244 
## converged
## # weights:  11
## initial  value 120.330027 
## iter  10 value 48.948789
## iter  20 value 19.465594
## iter  30 value 4.922147
## iter  40 value 3.955106
## iter  50 value 3.905223
## iter  60 value 3.894400
## iter  70 value 3.881836
## iter  80 value 3.874804
## iter  90 value 3.872370
## iter 100 value 3.872335
## final  value 3.872335 
## stopped after 100 iterations
## # weights:  27
## initial  value 126.848219 
## iter  10 value 26.579951
## iter  20 value 2.125995
## iter  30 value 0.503338
## iter  40 value 0.462699
## iter  50 value 0.426509
## iter  60 value 0.411345
## iter  70 value 0.394772
## iter  80 value 0.382673
## iter  90 value 0.374982
## iter 100 value 0.371874
## final  value 0.371874 
## stopped after 100 iterations
## # weights:  43
## initial  value 139.437764 
## iter  10 value 6.381330
## iter  20 value 0.512400
## iter  30 value 0.467261
## iter  40 value 0.445606
## iter  50 value 0.436766
## iter  60 value 0.416541
## iter  70 value 0.388106
## iter  80 value 0.382227
## iter  90 value 0.379333
## iter 100 value 0.371278
## final  value 0.371278 
## stopped after 100 iterations
## # weights:  11
## initial  value 130.106043 
## iter  10 value 27.186408
## iter  20 value 4.702041
## iter  30 value 3.010037
## iter  40 value 2.199278
## iter  50 value 1.884656
## iter  60 value 1.836945
## iter  70 value 1.752174
## iter  80 value 1.745749
## iter  90 value 1.507029
## iter 100 value 1.493314
## final  value 1.493314 
## stopped after 100 iterations
## # weights:  27
## initial  value 114.723677 
## iter  10 value 6.352999
## iter  20 value 0.555935
## final  value 0.000059 
## converged
## # weights:  43
## initial  value 135.420682 
## iter  10 value 7.555059
## iter  20 value 0.331280
## iter  30 value 0.000103
## iter  30 value 0.000051
## iter  30 value 0.000050
## final  value 0.000050 
## converged
## # weights:  11
## initial  value 124.421768 
## iter  10 value 60.982773
## iter  20 value 44.161198
## iter  30 value 43.464615
## iter  30 value 43.464614
## iter  30 value 43.464614
## final  value 43.464614 
## converged
## # weights:  27
## initial  value 123.592678 
## iter  10 value 29.678577
## iter  20 value 20.064880
## iter  30 value 19.879129
## iter  40 value 19.844432
## final  value 19.844390 
## converged
## # weights:  43
## initial  value 140.131749 
## iter  10 value 28.007751
## iter  20 value 18.816789
## iter  30 value 18.340611
## iter  40 value 18.308431
## iter  50 value 18.305748
## final  value 18.305348 
## converged
## # weights:  11
## initial  value 123.494107 
## iter  10 value 105.350381
## iter  20 value 99.435136
## iter  30 value 40.065228
## iter  40 value 8.675195
## iter  50 value 4.168312
## iter  60 value 4.104548
## iter  70 value 3.854797
## iter  80 value 3.850383
## iter  90 value 3.845358
## iter 100 value 3.835212
## final  value 3.835212 
## stopped after 100 iterations
## # weights:  27
## initial  value 122.562474 
## iter  10 value 8.450360
## iter  20 value 1.814922
## iter  30 value 0.716283
## iter  40 value 0.640788
## iter  50 value 0.621339
## iter  60 value 0.612589
## iter  70 value 0.584200
## iter  80 value 0.544549
## iter  90 value 0.528601
## iter 100 value 0.514779
## final  value 0.514779 
## stopped after 100 iterations
## # weights:  43
## initial  value 123.657348 
## iter  10 value 10.614579
## iter  20 value 2.048113
## iter  30 value 0.659304
## iter  40 value 0.544423
## iter  50 value 0.532691
## iter  60 value 0.510665
## iter  70 value 0.466030
## iter  80 value 0.432980
## iter  90 value 0.364387
## iter 100 value 0.341414
## final  value 0.341414 
## stopped after 100 iterations
## # weights:  11
## initial  value 132.593715 
## iter  10 value 48.478232
## iter  20 value 26.680423
## iter  30 value 5.247608
## iter  40 value 2.894683
## iter  50 value 2.713712
## iter  60 value 2.620707
## iter  70 value 2.540290
## iter  80 value 2.455773
## iter  90 value 2.267592
## iter 100 value 2.151796
## final  value 2.151796 
## stopped after 100 iterations
## # weights:  27
## initial  value 120.567002 
## iter  10 value 4.393773
## iter  20 value 0.043939
## iter  30 value 0.000566
## final  value 0.000075 
## converged
## # weights:  43
## initial  value 119.486317 
## iter  10 value 8.852497
## iter  20 value 1.503151
## iter  30 value 0.005087
## iter  40 value 0.000143
## final  value 0.000045 
## converged
## # weights:  11
## initial  value 138.956697 
## iter  10 value 64.167257
## iter  20 value 46.791809
## iter  30 value 44.090079
## final  value 44.057609 
## converged
## # weights:  27
## initial  value 117.449640 
## iter  10 value 25.035090
## iter  20 value 20.291424
## iter  30 value 20.270756
## final  value 20.270746 
## converged
## # weights:  43
## initial  value 131.615496 
## iter  10 value 28.251470
## iter  20 value 19.360745
## iter  30 value 19.289328
## iter  40 value 19.287649
## iter  50 value 19.287597
## final  value 19.287594 
## converged
## # weights:  11
## initial  value 120.067169 
## iter  10 value 52.352023
## iter  20 value 50.228278
## iter  30 value 50.176003
## iter  40 value 50.144595
## iter  50 value 50.095225
## iter  60 value 49.938343
## iter  70 value 49.520427
## iter  80 value 49.433208
## iter  90 value 49.391382
## iter 100 value 49.306617
## final  value 49.306617 
## stopped after 100 iterations
## # weights:  27
## initial  value 121.958571 
## iter  10 value 4.666620
## iter  20 value 0.776850
## iter  30 value 0.707439
## iter  40 value 0.640867
## iter  50 value 0.600758
## iter  60 value 0.593505
## iter  70 value 0.584147
## iter  80 value 0.557207
## iter  90 value 0.538098
## iter 100 value 0.514508
## final  value 0.514508 
## stopped after 100 iterations
## # weights:  43
## initial  value 122.004578 
## iter  10 value 5.297091
## iter  20 value 1.244824
## iter  30 value 0.495554
## iter  40 value 0.483174
## iter  50 value 0.468581
## iter  60 value 0.375798
## iter  70 value 0.362002
## iter  80 value 0.358173
## iter  90 value 0.350027
## iter 100 value 0.341343
## final  value 0.341343 
## stopped after 100 iterations
## # weights:  11
## initial  value 127.875079 
## iter  10 value 33.444226
## iter  20 value 6.390350
## iter  30 value 2.177976
## iter  40 value 1.888232
## iter  50 value 0.770754
## iter  60 value 0.617610
## iter  70 value 0.559419
## iter  80 value 0.543517
## iter  90 value 0.477915
## iter 100 value 0.457584
## final  value 0.457584 
## stopped after 100 iterations
## # weights:  27
## initial  value 128.599893 
## iter  10 value 44.079424
## iter  20 value 2.154037
## iter  30 value 0.029681
## final  value 0.000069 
## converged
## # weights:  43
## initial  value 124.439568 
## iter  10 value 4.443221
## iter  20 value 0.029295
## final  value 0.000092 
## converged
## # weights:  11
## initial  value 140.781917 
## iter  10 value 49.139091
## iter  20 value 42.676198
## final  value 42.671367 
## converged
## # weights:  27
## initial  value 130.168472 
## iter  10 value 25.483245
## iter  20 value 19.394183
## iter  30 value 18.266411
## iter  40 value 18.183916
## iter  50 value 18.183745
## final  value 18.183745 
## converged
## # weights:  43
## initial  value 123.492335 
## iter  10 value 25.604376
## iter  20 value 17.578453
## iter  30 value 17.302413
## iter  40 value 17.239993
## iter  50 value 17.235966
## iter  60 value 17.210698
## iter  70 value 16.990390
## iter  80 value 16.954457
## final  value 16.954456 
## converged
## # weights:  11
## initial  value 141.016346 
## iter  10 value 27.908285
## iter  20 value 4.184545
## iter  30 value 2.072889
## iter  40 value 1.990949
## iter  50 value 1.947868
## iter  60 value 1.913708
## iter  70 value 1.905145
## iter  80 value 1.901705
## iter  90 value 1.899713
## iter 100 value 1.897791
## final  value 1.897791 
## stopped after 100 iterations
## # weights:  27
## initial  value 130.318008 
## iter  10 value 2.534330
## iter  20 value 0.226734
## iter  30 value 0.212995
## iter  40 value 0.196194
## iter  50 value 0.192300
## iter  60 value 0.173589
## iter  70 value 0.165969
## iter  80 value 0.158151
## iter  90 value 0.151971
## iter 100 value 0.146246
## final  value 0.146246 
## stopped after 100 iterations
## # weights:  43
## initial  value 132.276641 
## iter  10 value 27.227544
## iter  20 value 2.208204
## iter  30 value 0.486149
## iter  40 value 0.384802
## iter  50 value 0.322610
## iter  60 value 0.296213
## iter  70 value 0.260001
## iter  80 value 0.186170
## iter  90 value 0.168783
## iter 100 value 0.156405
## final  value 0.156405 
## stopped after 100 iterations
## # weights:  11
## initial  value 124.721231 
## iter  10 value 24.907273
## iter  20 value 3.860256
## iter  30 value 2.694222
## iter  40 value 2.606534
## iter  50 value 2.549742
## iter  60 value 2.480770
## iter  70 value 2.432589
## iter  80 value 2.374387
## iter  90 value 2.304015
## iter 100 value 2.277255
## final  value 2.277255 
## stopped after 100 iterations
## # weights:  27
## initial  value 135.883765 
## iter  10 value 9.588177
## iter  20 value 2.164867
## iter  30 value 0.003083
## iter  40 value 0.000404
## final  value 0.000079 
## converged
## # weights:  43
## initial  value 128.423859 
## iter  10 value 8.362453
## iter  20 value 1.107101
## iter  30 value 0.002056
## final  value 0.000080 
## converged
## # weights:  11
## initial  value 126.814860 
## iter  10 value 45.330853
## iter  20 value 43.371713
## final  value 43.371698 
## converged
## # weights:  27
## initial  value 134.971673 
## iter  10 value 35.878441
## iter  20 value 23.544146
## iter  30 value 21.359427
## iter  40 value 19.924676
## iter  50 value 19.397158
## iter  60 value 19.396984
## final  value 19.396975 
## converged
## # weights:  43
## initial  value 131.139565 
## iter  10 value 26.253238
## iter  20 value 18.403900
## iter  30 value 17.965643
## iter  40 value 17.848649
## iter  50 value 17.842969
## iter  60 value 17.842727
## final  value 17.842722 
## converged
## # weights:  11
## initial  value 121.942596 
## iter  10 value 38.114589
## iter  20 value 5.888252
## iter  30 value 4.098676
## iter  40 value 3.775997
## iter  50 value 3.766825
## iter  60 value 3.726327
## iter  70 value 3.712347
## iter  80 value 3.712293
## iter  90 value 3.711980
## final  value 3.711809 
## converged
## # weights:  27
## initial  value 124.424719 
## iter  10 value 36.553008
## iter  20 value 9.253423
## iter  30 value 1.918811
## iter  40 value 0.813359
## iter  50 value 0.471166
## iter  60 value 0.434232
## iter  70 value 0.412618
## iter  80 value 0.405562
## iter  90 value 0.400759
## iter 100 value 0.390511
## final  value 0.390511 
## stopped after 100 iterations
## # weights:  43
## initial  value 127.087485 
## iter  10 value 3.861857
## iter  20 value 0.789964
## iter  30 value 0.603240
## iter  40 value 0.538274
## iter  50 value 0.482849
## iter  60 value 0.442551
## iter  70 value 0.343017
## iter  80 value 0.327263
## iter  90 value 0.311396
## iter 100 value 0.296024
## final  value 0.296024 
## stopped after 100 iterations
## # weights:  11
## initial  value 120.926669 
## iter  10 value 80.051213
## iter  20 value 49.871571
## iter  30 value 37.312293
## iter  40 value 8.554628
## iter  50 value 4.749590
## iter  60 value 4.203783
## iter  70 value 3.338322
## iter  80 value 2.396834
## iter  90 value 2.285253
## iter 100 value 2.266166
## final  value 2.266166 
## stopped after 100 iterations
## # weights:  27
## initial  value 134.314255 
## iter  10 value 18.375214
## iter  20 value 3.032836
## iter  30 value 0.088363
## iter  40 value 0.000269
## final  value 0.000068 
## converged
## # weights:  43
## initial  value 127.460669 
## iter  10 value 6.647251
## iter  20 value 0.860359
## iter  30 value 0.000183
## iter  30 value 0.000089
## iter  30 value 0.000088
## final  value 0.000088 
## converged
## # weights:  11
## initial  value 129.349972 
## iter  10 value 58.657455
## iter  20 value 46.190684
## iter  30 value 43.787672
## final  value 43.776742 
## converged
## # weights:  27
## initial  value 136.564527 
## iter  10 value 26.172828
## iter  20 value 21.449170
## iter  30 value 21.350292
## iter  40 value 21.347425
## final  value 21.347423 
## converged
## # weights:  43
## initial  value 134.553205 
## iter  10 value 26.863852
## iter  20 value 19.099568
## iter  30 value 18.385082
## iter  40 value 18.319448
## iter  50 value 18.315140
## iter  60 value 18.314237
## final  value 18.314138 
## converged
## # weights:  11
## initial  value 118.845224 
## iter  10 value 51.168472
## iter  20 value 49.976921
## iter  30 value 49.973436
## iter  40 value 49.963205
## iter  50 value 49.957210
## iter  60 value 49.917964
## iter  70 value 44.684196
## iter  80 value 14.830732
## iter  90 value 4.745959
## iter 100 value 4.005893
## final  value 4.005893 
## stopped after 100 iterations
## # weights:  27
## initial  value 116.024325 
## iter  10 value 39.736151
## iter  20 value 28.650940
## iter  30 value 21.536570
## iter  40 value 10.723406
## iter  50 value 4.960185
## iter  60 value 4.763786
## iter  70 value 4.501322
## iter  80 value 3.728015
## iter  90 value 1.977298
## iter 100 value 1.662670
## final  value 1.662670 
## stopped after 100 iterations
## # weights:  43
## initial  value 139.109512 
## iter  10 value 6.839446
## iter  20 value 1.801500
## iter  30 value 0.653309
## iter  40 value 0.629758
## iter  50 value 0.531276
## iter  60 value 0.495929
## iter  70 value 0.479711
## iter  80 value 0.474062
## iter  90 value 0.459572
## iter 100 value 0.439866
## final  value 0.439866 
## stopped after 100 iterations
## # weights:  11
## initial  value 130.134894 
## iter  10 value 21.120199
## iter  20 value 3.850425
## iter  30 value 2.619123
## iter  40 value 2.164615
## iter  50 value 2.113793
## iter  60 value 2.099946
## iter  70 value 1.982283
## iter  80 value 1.970304
## iter  90 value 1.855431
## iter 100 value 1.840065
## final  value 1.840065 
## stopped after 100 iterations
## # weights:  27
## initial  value 121.319823 
## iter  10 value 9.224554
## iter  20 value 1.619145
## iter  30 value 0.023451
## final  value 0.000052 
## converged
## # weights:  43
## initial  value 119.958783 
## iter  10 value 7.355517
## iter  20 value 0.451841
## iter  30 value 0.000974
## final  value 0.000055 
## converged
## # weights:  11
## initial  value 135.882848 
## iter  10 value 106.344554
## iter  20 value 49.663389
## iter  30 value 44.082267
## final  value 44.081824 
## converged
## # weights:  27
## initial  value 129.601052 
## iter  10 value 25.326332
## iter  20 value 20.841301
## iter  30 value 20.365360
## iter  40 value 19.981453
## iter  50 value 19.971411
## iter  60 value 19.970853
## final  value 19.970845 
## converged
## # weights:  43
## initial  value 133.009438 
## iter  10 value 28.591164
## iter  20 value 19.530477
## iter  30 value 19.340802
## iter  40 value 19.337827
## iter  50 value 19.336955
## iter  60 value 19.336942
## final  value 19.336937 
## converged
## # weights:  11
## initial  value 122.494186 
## iter  10 value 50.595369
## iter  20 value 49.972100
## final  value 49.965717 
## converged
## # weights:  27
## initial  value 126.005379 
## iter  10 value 20.133877
## iter  20 value 1.723439
## iter  30 value 0.850570
## iter  40 value 0.800848
## iter  50 value 0.703194
## iter  60 value 0.587465
## iter  70 value 0.532854
## iter  80 value 0.518100
## iter  90 value 0.494016
## iter 100 value 0.483044
## final  value 0.483044 
## stopped after 100 iterations
## # weights:  43
## initial  value 141.403683 
## iter  10 value 5.004731
## iter  20 value 1.695175
## iter  30 value 0.892849
## iter  40 value 0.736870
## iter  50 value 0.604144
## iter  60 value 0.525125
## iter  70 value 0.514531
## iter  80 value 0.503234
## iter  90 value 0.485164
## iter 100 value 0.477446
## final  value 0.477446 
## stopped after 100 iterations
## # weights:  11
## initial  value 134.899919 
## iter  10 value 37.356151
## iter  20 value 12.284395
## iter  30 value 4.202226
## iter  40 value 3.073761
## iter  50 value 2.532373
## iter  60 value 2.211445
## iter  70 value 2.166202
## iter  80 value 2.124348
## iter  90 value 2.055965
## iter 100 value 1.816387
## final  value 1.816387 
## stopped after 100 iterations
## # weights:  27
## initial  value 124.434786 
## iter  10 value 4.774821
## iter  20 value 0.002590
## iter  30 value 0.000113
## final  value 0.000099 
## converged
## # weights:  43
## initial  value 117.179052 
## iter  10 value 2.763293
## iter  20 value 0.003312
## final  value 0.000057 
## converged
## # weights:  11
## initial  value 144.222752 
## iter  10 value 60.355328
## iter  20 value 43.895422
## iter  30 value 42.994217
## iter  30 value 42.994216
## iter  30 value 42.994216
## final  value 42.994216 
## converged
## # weights:  27
## initial  value 149.958592 
## iter  10 value 29.106817
## iter  20 value 18.723106
## iter  30 value 18.602068
## iter  40 value 18.594731
## final  value 18.594730 
## converged
## # weights:  43
## initial  value 151.323466 
## iter  10 value 25.176469
## iter  20 value 17.911917
## iter  30 value 17.801742
## iter  40 value 17.567450
## iter  50 value 17.232979
## iter  60 value 17.040933
## iter  70 value 17.030898
## iter  80 value 17.030049
## final  value 17.029957 
## converged
## # weights:  11
## initial  value 125.330915 
## iter  10 value 50.092228
## iter  20 value 49.928518
## iter  30 value 49.225211
## iter  40 value 46.190986
## iter  50 value 39.912675
## iter  60 value 14.721394
## iter  70 value 5.240189
## iter  80 value 3.695497
## iter  90 value 3.515460
## iter 100 value 3.098835
## final  value 3.098835 
## stopped after 100 iterations
## # weights:  27
## initial  value 131.514021 
## iter  10 value 21.428450
## iter  20 value 1.857646
## iter  30 value 0.656298
## iter  40 value 0.573496
## iter  50 value 0.440421
## iter  60 value 0.411152
## iter  70 value 0.390519
## iter  80 value 0.385680
## iter  90 value 0.368784
## iter 100 value 0.348473
## final  value 0.348473 
## stopped after 100 iterations
## # weights:  43
## initial  value 131.396056 
## iter  10 value 4.227384
## iter  20 value 1.424260
## iter  30 value 0.484542
## iter  40 value 0.451634
## iter  50 value 0.434553
## iter  60 value 0.411818
## iter  70 value 0.380774
## iter  80 value 0.361957
## iter  90 value 0.355571
## iter 100 value 0.341448
## final  value 0.341448 
## stopped after 100 iterations
## # weights:  11
## initial  value 124.725766 
## iter  10 value 52.435359
## iter  20 value 49.907922
## iter  30 value 49.382401
## iter  40 value 35.220997
## iter  50 value 8.801913
## iter  60 value 4.262407
## iter  70 value 2.632280
## iter  80 value 2.291911
## iter  90 value 2.171173
## iter 100 value 2.064037
## final  value 2.064037 
## stopped after 100 iterations
## # weights:  27
## initial  value 121.213256 
## iter  10 value 4.715440
## iter  20 value 0.012867
## final  value 0.000060 
## converged
## # weights:  43
## initial  value 125.839411 
## iter  10 value 5.743691
## iter  20 value 0.160593
## final  value 0.000072 
## converged
## # weights:  11
## initial  value 119.242497 
## iter  10 value 44.746080
## iter  20 value 43.871570
## final  value 43.871556 
## converged
## # weights:  27
## initial  value 126.090732 
## iter  10 value 27.134842
## iter  20 value 22.347298
## iter  30 value 22.047386
## iter  40 value 21.022820
## iter  50 value 20.939006
## final  value 20.938933 
## converged
## # weights:  43
## initial  value 108.205013 
## iter  10 value 33.575657
## iter  20 value 19.798211
## iter  30 value 19.239341
## iter  40 value 18.985431
## iter  50 value 18.950630
## iter  60 value 18.943527
## iter  70 value 18.940566
## final  value 18.940477 
## converged
## # weights:  11
## initial  value 127.705849 
## iter  10 value 45.929987
## iter  20 value 36.821210
## iter  30 value 13.164203
## iter  40 value 4.588665
## iter  50 value 3.615648
## iter  60 value 3.539641
## iter  70 value 3.325096
## iter  80 value 3.304364
## iter  90 value 3.301093
## iter 100 value 3.300849
## final  value 3.300849 
## stopped after 100 iterations
## # weights:  27
## initial  value 145.426276 
## iter  10 value 10.662092
## iter  20 value 1.885068
## iter  30 value 0.785276
## iter  40 value 0.647444
## iter  50 value 0.560103
## iter  60 value 0.508256
## iter  70 value 0.473915
## iter  80 value 0.426546
## iter  90 value 0.371958
## iter 100 value 0.345431
## final  value 0.345431 
## stopped after 100 iterations
## # weights:  43
## initial  value 129.307234 
## iter  10 value 6.466680
## iter  20 value 0.465599
## iter  30 value 0.369290
## iter  40 value 0.356601
## iter  50 value 0.340119
## iter  60 value 0.332450
## iter  70 value 0.314144
## iter  80 value 0.302247
## iter  90 value 0.299302
## iter 100 value 0.291440
## final  value 0.291440 
## stopped after 100 iterations
## # weights:  11
## initial  value 118.395363 
## iter  10 value 50.040092
## iter  20 value 49.907040
## final  value 49.906755 
## converged
## # weights:  27
## initial  value 120.969076 
## iter  10 value 9.562802
## iter  20 value 0.612910
## iter  30 value 0.002474
## final  value 0.000067 
## converged
## # weights:  43
## initial  value 122.764102 
## iter  10 value 8.448140
## iter  20 value 0.780831
## iter  30 value 0.002363
## final  value 0.000084 
## converged
## # weights:  11
## initial  value 130.728649 
## iter  10 value 57.681475
## iter  20 value 44.398334
## iter  30 value 43.385700
## final  value 43.382021 
## converged
## # weights:  27
## initial  value 128.997817 
## iter  10 value 30.196862
## iter  20 value 19.901318
## iter  30 value 19.715836
## iter  40 value 19.653286
## iter  50 value 19.494844
## iter  60 value 19.484851
## iter  70 value 19.483818
## final  value 19.483817 
## converged
## # weights:  43
## initial  value 102.606354 
## iter  10 value 24.828885
## iter  20 value 18.910758
## iter  30 value 18.573516
## iter  40 value 18.463629
## iter  50 value 18.462101
## final  value 18.462087 
## converged
## # weights:  11
## initial  value 120.687211 
## iter  10 value 54.577891
## iter  20 value 26.112984
## iter  30 value 4.533226
## iter  40 value 3.795451
## iter  50 value 3.694006
## iter  60 value 3.664231
## iter  70 value 3.658786
## iter  80 value 3.647778
## iter  90 value 3.645322
## iter 100 value 3.645062
## final  value 3.645062 
## stopped after 100 iterations
## # weights:  27
## initial  value 126.392641 
## iter  10 value 28.610864
## iter  20 value 6.330440
## iter  30 value 1.064218
## iter  40 value 0.263611
## iter  50 value 0.252745
## iter  60 value 0.248951
## iter  70 value 0.224939
## iter  80 value 0.215765
## iter  90 value 0.214087
## iter 100 value 0.211165
## final  value 0.211165 
## stopped after 100 iterations
## # weights:  43
## initial  value 139.699176 
## iter  10 value 4.566035
## iter  20 value 0.709051
## iter  30 value 0.579667
## iter  40 value 0.527335
## iter  50 value 0.469353
## iter  60 value 0.440636
## iter  70 value 0.396077
## iter  80 value 0.370362
## iter  90 value 0.317181
## iter 100 value 0.308036
## final  value 0.308036 
## stopped after 100 iterations
## # weights:  27
## initial  value 176.738412 
## iter  10 value 28.632388
## iter  20 value 21.019063
## iter  30 value 20.367429
## iter  40 value 20.366183
## final  value 20.366062 
## converged
resultado_entrenamiento <- predict(modelo,entrenamiento)
resultado_prueba <- predict(modelo, prueba)

#Matriz de confusión del resultado de entrenamiento 
mcre <- confusionMatrix(resultado_entrenamiento, entrenamiento$Species)
mcre
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         40          0         0
##   versicolor      0         38         0
##   virginica       0          2        40
## 
## Overall Statistics
##                                          
##                Accuracy : 0.9833         
##                  95% CI : (0.9411, 0.998)
##     No Information Rate : 0.3333         
##     P-Value [Acc > NIR] : < 2.2e-16      
##                                          
##                   Kappa : 0.975          
##                                          
##  Mcnemar's Test P-Value : NA             
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            0.9500           1.0000
## Specificity                 1.0000            1.0000           0.9750
## Pos Pred Value              1.0000            1.0000           0.9524
## Neg Pred Value              1.0000            0.9756           1.0000
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3167           0.3333
## Detection Prevalence        0.3333            0.3167           0.3500
## Balanced Accuracy           1.0000            0.9750           0.9875
#Matriz de confusion 
mcrp <-confusionMatrix(resultado_prueba,prueba$Species)
mcrp
## Confusion Matrix and Statistics
## 
##             Reference
## Prediction   setosa versicolor virginica
##   setosa         10          0         0
##   versicolor      0         10         1
##   virginica       0          0         9
## 
## Overall Statistics
##                                           
##                Accuracy : 0.9667          
##                  95% CI : (0.8278, 0.9992)
##     No Information Rate : 0.3333          
##     P-Value [Acc > NIR] : 2.963e-13       
##                                           
##                   Kappa : 0.95            
##                                           
##  Mcnemar's Test P-Value : NA              
## 
## Statistics by Class:
## 
##                      Class: setosa Class: versicolor Class: virginica
## Sensitivity                 1.0000            1.0000           0.9000
## Specificity                 1.0000            0.9500           1.0000
## Pos Pred Value              1.0000            0.9091           1.0000
## Neg Pred Value              1.0000            1.0000           0.9524
## Prevalence                  0.3333            0.3333           0.3333
## Detection Rate              0.3333            0.3333           0.3000
## Detection Prevalence        0.3333            0.3667           0.3000
## Balanced Accuracy           1.0000            0.9750           0.9500

Conclusiones

El modelo clasifica setosa con desempeño perfecto, sin errores de predicción.

Presenta un desempeño muy alto en versicolor, con mínima presencia de falsos positivos.

En virginica mantiene alta precisión, aunque con algunos falsos negativos.

En general, el modelo muestra excelente capacidad discriminatoria y alta exactitud balanceada en las tres clases.