This analysis is for tons/ha total marketable yeild

Load the Data

data_long = readxl::read_xlsx("~/Desktop/My_Data/R_analysis/Copy of data_wide.xlsx") |>
  janitor::clean_names()

The 3 plots below are just show a graphical representation of outliers, I intially had a boxplot, but Andy wasn’t too hapy with and suggested I try something else, so I included 2 more plots. Do you have an opionion on what might bve a good plot to show residuals or outliers?

Look for residuals or outliers

Below we have the interaction plot

ANOVA Table

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: t_ha_total_marketable ~ variety * spacing + (1 | rep)
##    Data: dat_2025
## 
## REML criterion at convergence: 116
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.53490 -0.70338 -0.05258  0.64108  1.67106 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  rep      (Intercept) 15.87    3.984   
##  Residual             25.77    5.077   
## Number of obs: 23, groups:  rep, 4
## 
## Fixed effects:
##                           Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)               55.35063    3.58935 12.60298  15.421 1.49e-09 ***
## varietyLakeview            0.08187    3.91908 14.24805   0.021   0.9836    
## spacing10                  7.04437    3.91908 14.24805   1.797   0.0935 .  
## spacing12                  0.35687    3.91908 14.24805   0.091   0.9287    
## varietyLakeview:spacing10 -7.27687    5.31472 14.16516  -1.369   0.1923    
## varietyLakeview:spacing12 -4.13937    5.31472 14.16516  -0.779   0.4489    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) vrtyLk spcn10 spcn12 vrL:10
## varietyLkvw -0.634                            
## spacing10   -0.634  0.580                     
## spacing12   -0.634  0.580  0.580              
## vrtyLkvw:10  0.467 -0.737 -0.737 -0.428       
## vrtyLkvw:12  0.467 -0.737 -0.428 -0.737  0.544

Estimated marginal means

##  variety  spacing emmean   SE   df lower.CL upper.CL
##  Caribou  8         55.4 3.61 12.5     47.5     63.2
##  Lakeview 8         55.4 3.23 10.1     48.3     62.6
##  Caribou  10        62.4 3.23 10.1     55.2     69.6
##  Lakeview 10        55.2 3.23 10.1     48.0     62.4
##  Caribou  12        55.7 3.23 10.1     48.5     62.9
##  Lakeview 12        51.6 3.23 10.1     44.5     58.8
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
##  contrast                                estimate   SE   df t.ratio p.value
##  Caribou spacing8 - Lakeview spacing8     -0.0819 3.94 14.2  -0.021  1.0000
##  Caribou spacing8 - Caribou spacing10     -7.0444 3.94 14.2  -1.788  0.5022
##  Caribou spacing8 - Lakeview spacing10     0.1506 3.94 14.2   0.038  1.0000
##  Caribou spacing8 - Caribou spacing12     -0.3569 3.94 14.2  -0.091  1.0000
##  Caribou spacing8 - Lakeview spacing12     3.7006 3.94 14.2   0.939  0.9294
##  Lakeview spacing8 - Caribou spacing10    -6.9625 3.59 14.0  -1.939  0.4200
##  Lakeview spacing8 - Lakeview spacing10    0.2325 3.59 14.0   0.065  1.0000
##  Lakeview spacing8 - Caribou spacing12    -0.2750 3.59 14.0  -0.077  1.0000
##  Lakeview spacing8 - Lakeview spacing12    3.7825 3.59 14.0   1.054  0.8914
##  Caribou spacing10 - Lakeview spacing10    7.1950 3.59 14.0   2.004  0.3868
##  Caribou spacing10 - Caribou spacing12     6.6875 3.59 14.0   1.863  0.4609
##  Caribou spacing10 - Lakeview spacing12   10.7450 3.59 14.0   2.993  0.0831
##  Lakeview spacing10 - Caribou spacing12   -0.5075 3.59 14.0  -0.141  1.0000
##  Lakeview spacing10 - Lakeview spacing12   3.5500 3.59 14.0   0.989  0.9141
##  Caribou spacing12 - Lakeview spacing12    4.0575 3.59 14.0   1.130  0.8609
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 6 estimates
## variety = Caribou:
##  contrast              estimate   SE   df t.ratio p.value
##  spacing8 - spacing10    -7.044 3.94 14.2  -1.788  0.2089
##  spacing8 - spacing12    -0.357 3.94 14.2  -0.091  0.9955
##  spacing10 - spacing12    6.688 3.59 14.0   1.863  0.1860
## 
## variety = Lakeview:
##  contrast              estimate   SE   df t.ratio p.value
##  spacing8 - spacing10     0.233 3.59 14.0   0.065  0.9977
##  spacing8 - spacing12     3.783 3.59 14.0   1.054  0.5569
##  spacing10 - spacing12    3.550 3.59 14.0   0.989  0.5955
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
## spacing = 8:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview  -0.0819 3.94 14.2  -0.021  0.9837
## 
## spacing = 10:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview   7.1950 3.59 14.0   2.004  0.0648
## 
## spacing = 12:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview   4.0575 3.59 14.0   1.130  0.2774
## 
## Degrees-of-freedom method: kenward-roger

Now we have the combined model for both years.

How does this look?

Much better?

I kinda like it
  1. Start here
  2. And then here
  3. Lastly, we are here
m_all = lmer(
  t_ha_total_marketable  ~ year * variety * spacing + (1 | year:rep),
  data = dat,
  REML = TRUE
)

anova(m_all)
summary(m_all)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: t_ha_total_marketable ~ year * variety * spacing + (1 | year:rep)
##    Data: dat
## 
## REML criterion at convergence: 253.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.02576 -0.51527  0.04525  0.45732  1.77466 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  year:rep (Intercept)  7.077   2.660   
##  Residual             45.554   6.749   
## Number of obs: 47, groups:  year:rep, 8
## 
## Fixed effects:
##                                    Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)                         52.8075     3.6274 32.2451  14.558 9.94e-16
## year2025                             2.3647     5.5176 33.3042   0.429    0.671
## varietyLakeview                      9.4975     4.7725 29.1387   1.990    0.056
## spacing10                            4.1375     4.7725 29.1387   0.867    0.393
## spacing12                           -0.5775     4.7725 29.1387  -0.121    0.905
## year2025:varietyLakeview            -9.2372     7.0486 29.5858  -1.311    0.200
## year2025:spacing10                   3.0853     7.0486 29.5858   0.438    0.665
## year2025:spacing12                   1.1128     7.0486 29.5858   0.158    0.876
## varietyLakeview:spacing10           -2.2450     6.7494 29.1387  -0.333    0.742
## varietyLakeview:spacing12           -5.4500     6.7494 29.1387  -0.807    0.426
## year2025:varietyLakeview:spacing10  -5.2103     9.7589 29.3729  -0.534    0.597
## year2025:varietyLakeview:spacing12   1.1322     9.7589 29.3729   0.116    0.908
##                                       
## (Intercept)                        ***
## year2025                              
## varietyLakeview                    .  
## spacing10                             
## spacing12                             
## year2025:varietyLakeview              
## year2025:spacing10                    
## year2025:spacing12                    
## varietyLakeview:spacing10             
## varietyLakeview:spacing12             
## year2025:varietyLakeview:spacing10    
## year2025:varietyLakeview:spacing12    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) yr2025 vrtyLk spcn10 spcn12 yr2025:L y2025:10 y2025:12
## year2025    -0.657                                                       
## varietyLkvw -0.658  0.432                                                
## spacing10   -0.658  0.432  0.500                                         
## spacing12   -0.658  0.432  0.500  0.500                                  
## yr2025:vrtL  0.445 -0.692 -0.677 -0.339 -0.339                           
## yr2025:sp10  0.445 -0.692 -0.339 -0.677 -0.339  0.542                    
## yr2025:sp12  0.445 -0.692 -0.339 -0.339 -0.677  0.542    0.542           
## vrtyLkvw:10  0.465 -0.306 -0.707 -0.707 -0.354  0.479    0.479    0.239  
## vrtyLkvw:12  0.465 -0.306 -0.707 -0.354 -0.707  0.479    0.239    0.479  
## yr2025:L:10 -0.322  0.500  0.489  0.489  0.245 -0.722   -0.722   -0.391  
## yr2025:L:12 -0.322  0.500  0.489  0.245  0.489 -0.722   -0.391   -0.722  
##             vrL:10 vrL:12 y2025:L:10
## year2025                            
## varietyLkvw                         
## spacing10                           
## spacing12                           
## yr2025:vrtL                         
## yr2025:sp10                         
## yr2025:sp12                         
## vrtyLkvw:10                         
## vrtyLkvw:12  0.500                  
## yr2025:L:10 -0.692 -0.346           
## yr2025:L:12 -0.346 -0.692  0.522
# Year-specific treatment means
emm_by_year = emmeans(m_all, ~ variety * spacing | year)
emm_by_year
## year = 2024:
##  variety  spacing emmean   SE   df lower.CL upper.CL
##  Caribou  8         52.8 3.63 32.2     45.4     60.2
##  Lakeview 8         62.3 3.63 32.2     54.9     69.7
##  Caribou  10        56.9 3.63 32.2     49.6     64.3
##  Lakeview 10        64.2 3.63 32.2     56.8     71.6
##  Caribou  12        52.2 3.63 32.2     44.8     59.6
##  Lakeview 12        56.3 3.63 32.2     48.9     63.7
## 
## year = 2025:
##  variety  spacing emmean   SE   df lower.CL upper.CL
##  Caribou  8         55.2 4.19 33.9     46.7     63.7
##  Lakeview 8         55.4 3.63 32.2     48.0     62.8
##  Caribou  10        62.4 3.63 32.2     55.0     69.8
##  Lakeview 10        55.2 3.63 32.2     47.8     62.6
##  Caribou  12        55.7 3.63 32.2     48.3     63.1
##  Lakeview 12        51.6 3.63 32.2     44.3     59.0
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
# Pairwise within each year (all 6 combos per year)
pairs(emm_by_year, adjust = "tukey")
## year = 2024:
##  contrast                                estimate   SE   df t.ratio p.value
##  Caribou spacing8 - Lakeview spacing8     -9.4975 4.77 29.0  -1.990  0.3720
##  Caribou spacing8 - Caribou spacing10     -4.1375 4.77 29.0  -0.867  0.9514
##  Caribou spacing8 - Lakeview spacing10   -11.3900 4.77 29.0  -2.387  0.1941
##  Caribou spacing8 - Caribou spacing12      0.5775 4.77 29.0   0.121  1.0000
##  Caribou spacing8 - Lakeview spacing12    -3.4700 4.77 29.0  -0.727  0.9769
##  Lakeview spacing8 - Caribou spacing10     5.3600 4.77 29.0   1.123  0.8678
##  Lakeview spacing8 - Lakeview spacing10   -1.8925 4.77 29.0  -0.397  0.9986
##  Lakeview spacing8 - Caribou spacing12    10.0750 4.77 29.0   2.111  0.3098
##  Lakeview spacing8 - Lakeview spacing12    6.0275 4.77 29.0   1.263  0.8021
##  Caribou spacing10 - Lakeview spacing10   -7.2525 4.77 29.0  -1.520  0.6549
##  Caribou spacing10 - Caribou spacing12     4.7150 4.77 29.0   0.988  0.9181
##  Caribou spacing10 - Lakeview spacing12    0.6675 4.77 29.0   0.140  1.0000
##  Lakeview spacing10 - Caribou spacing12   11.9675 4.77 29.0   2.508  0.1550
##  Lakeview spacing10 - Lakeview spacing12   7.9200 4.77 29.0   1.659  0.5679
##  Caribou spacing12 - Lakeview spacing12   -4.0475 4.77 29.0  -0.848  0.9556
## 
## year = 2025:
##  contrast                                estimate   SE   df t.ratio p.value
##  Caribou spacing8 - Lakeview spacing8     -0.2603 5.21 29.8  -0.050  1.0000
##  Caribou spacing8 - Caribou spacing10     -7.2228 5.21 29.8  -1.385  0.7354
##  Caribou spacing8 - Lakeview spacing10    -0.0278 5.21 29.8  -0.005  1.0000
##  Caribou spacing8 - Caribou spacing12     -0.5353 5.21 29.8  -0.103  1.0000
##  Caribou spacing8 - Lakeview spacing12     3.5222 5.21 29.8   0.675  0.9834
##  Lakeview spacing8 - Caribou spacing10    -6.9625 4.77 29.0  -1.459  0.6919
##  Lakeview spacing8 - Lakeview spacing10    0.2325 4.77 29.0   0.049  1.0000
##  Lakeview spacing8 - Caribou spacing12    -0.2750 4.77 29.0  -0.058  1.0000
##  Lakeview spacing8 - Lakeview spacing12    3.7825 4.77 29.0   0.793  0.9666
##  Caribou spacing10 - Lakeview spacing10    7.1950 4.77 29.0   1.508  0.6623
##  Caribou spacing10 - Caribou spacing12     6.6875 4.77 29.0   1.401  0.7259
##  Caribou spacing10 - Lakeview spacing12   10.7450 4.77 29.0   2.251  0.2462
##  Lakeview spacing10 - Caribou spacing12   -0.5075 4.77 29.0  -0.106  1.0000
##  Lakeview spacing10 - Lakeview spacing12   3.5500 4.77 29.0   0.744  0.9745
##  Caribou spacing12 - Lakeview spacing12    4.0575 4.77 29.0   0.850  0.9551
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 6 estimates
# Spacing comparisons within variety, by year
pairs(emm_by_year, by = c("year","variety"), adjust = "tukey")
## year = 2024, variety = Caribou:
##  contrast              estimate   SE   df t.ratio p.value
##  spacing8 - spacing10    -4.138 4.77 29.0  -0.867  0.6650
##  spacing8 - spacing12     0.578 4.77 29.0   0.121  0.9920
##  spacing10 - spacing12    4.715 4.77 29.0   0.988  0.5902
## 
## year = 2025, variety = Caribou:
##  contrast              estimate   SE   df t.ratio p.value
##  spacing8 - spacing10    -7.223 5.21 29.8  -1.385  0.3614
##  spacing8 - spacing12    -0.535 5.21 29.8  -0.103  0.9942
##  spacing10 - spacing12    6.688 4.77 29.0   1.401  0.3535
## 
## year = 2024, variety = Lakeview:
##  contrast              estimate   SE   df t.ratio p.value
##  spacing8 - spacing10    -1.893 4.77 29.0  -0.397  0.9172
##  spacing8 - spacing12     6.027 4.77 29.0   1.263  0.4270
##  spacing10 - spacing12    7.920 4.77 29.0   1.659  0.2378
## 
## year = 2025, variety = Lakeview:
##  contrast              estimate   SE   df t.ratio p.value
##  spacing8 - spacing10     0.233 4.77 29.0   0.049  0.9987
##  spacing8 - spacing12     3.783 4.77 29.0   0.793  0.7105
##  spacing10 - spacing12    3.550 4.77 29.0   0.744  0.7397
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
# Variety comparisons within spacing, by year
pairs(emm_by_year, by = c("year","spacing"), adjust = "tukey")
## year = 2024, spacing = 8:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview    -9.50 4.77 29.0  -1.990  0.0561
## 
## year = 2025, spacing = 8:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview    -0.26 5.21 29.8  -0.050  0.9605
## 
## year = 2024, spacing = 10:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview    -7.25 4.77 29.0  -1.520  0.1394
## 
## year = 2025, spacing = 10:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview     7.20 4.77 29.0   1.508  0.1425
## 
## year = 2024, spacing = 12:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview    -4.05 4.77 29.0  -0.848  0.4033
## 
## year = 2025, spacing = 12:
##  contrast           estimate   SE   df t.ratio p.value
##  Caribou - Lakeview     4.06 4.77 29.0   0.850  0.4022
## 
## Degrees-of-freedom method: kenward-roger