## Data Frame Summary  
## df  
## Dimensions: 452 x 5  
## Duplicates: 394  
## 
## --------------------------------------------------------------------------------------------------------
## No   Variable       Stats / Values        Freqs (% of Valid)   Graph                 Valid     Missing  
## ---- -------------- --------------------- -------------------- --------------------- --------- ---------
## 1    Sex            1. female             327 (72.5%)          IIIIIIIIIIIIII        451       1        
##      [factor]       2. male               122 (27.1%)          IIIII                 (99.8%)   (0.2%)   
##                     3. intersex             2 ( 0.4%)                                                   
## 
## 2    Orientation    1. heterosexual       325 (72.2%)          IIIIIIIIIIIIII        450       2        
##      [factor]       2. gay/lesbian         16 ( 3.6%)                                (99.6%)   (0.4%)   
##                     3. bisexual            69 (15.3%)          III                                      
##                     4. asexual              3 ( 0.7%)                                                   
##                     5. queer               21 ( 4.7%)                                                   
##                     6. questioning         12 ( 2.7%)                                                   
##                     7. not listed           1 ( 0.2%)                                                   
##                     8. private              3 ( 0.7%)                                                   
## 
## 3    ParentDegree   1. parent degree      354 (78.5%)          IIIIIIIIIIIIIII       451       1        
##      [factor]       2. no parent degree    97 (21.5%)          IIII                  (99.8%)   (0.2%)   
## 
## 4    CSUResidency   1. in state           301 (66.7%)          IIIIIIIIIIIII         451       1        
##      [factor]       2. out of state       150 (33.3%)          IIIIII                (99.8%)   (0.2%)   
## 
## 5    Living         1. alone               26 ( 5.8%)          I                     451       1        
##      [factor]       2. roommate(s)        397 (88.0%)          IIIIIIIIIIIIIIIII     (99.8%)   (0.2%)   
##                     3. parents             28 ( 6.2%)          I                                        
## --------------------------------------------------------------------------------------------------------
##           Sex Orientation ParentDegree
## 1 451 (99.8%) 450 (99.6%)  451 (99.8%)

##    EndDate           ResponseId             CAS1            CAS2      
##  Length:452         Length:452         Min.   :1.000   Min.   :1.000  
##  Class :character   Class :character   1st Qu.:1.000   1st Qu.:1.000  
##  Mode  :character   Mode  :character   Median :1.000   Median :1.000  
##                                        Mean   :1.781   Mean   :1.418  
##                                        3rd Qu.:2.000   3rd Qu.:2.000  
##                                        Max.   :5.000   Max.   :4.000  
##                                                        NA's   :2      
##       CAS3            CAS4            CAS5            CAS6      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :1.223   Mean   :1.297   Mean   :1.504   Mean   :1.235  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:2.000   3rd Qu.:1.000  
##  Max.   :4.000   Max.   :4.000   Max.   :5.000   Max.   :4.000  
##                  NA's   :1                                      
##       CAS7            CAS8            CAS9           CAS10          CAS11      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.00   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.00   Median :1.000  
##  Mean   :1.146   Mean   :1.235   Mean   :1.199   Mean   :1.29   Mean   :1.148  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.00   3rd Qu.:1.000  
##  Max.   :4.000   Max.   :5.000   Max.   :5.000   Max.   :5.00   Max.   :4.000  
##                                                                                
##      CAS12           CAS13           CAS14           CAS15      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median :1.000   Median :1.000  
##  Mean   :1.119   Mean   :1.135   Mean   :1.812   Mean   :1.898  
##  3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :4.000   Max.   :5.000   Max.   :5.000  
##                  NA's   :1       NA's   :1                      
##      CAS16           CAS17           CAS18           CAS19      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:3.000   1st Qu.:4.000  
##  Median :2.000   Median :3.000   Median :4.000   Median :4.000  
##  Mean   :2.268   Mean   :2.732   Mean   :3.841   Mean   :4.208  
##  3rd Qu.:3.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##                  NA's   :1                                      
##      CAS20           CAS21          CAS22           CAPT1           CAPT2      
##  Min.   :1.000   Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:2.00   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :3.000   Median :3.00   Median :3.000   Median :2.000   Median :3.000  
##  Mean   :3.285   Mean   :2.77   Mean   :2.792   Mean   :2.491   Mean   :2.666  
##  3rd Qu.:4.000   3rd Qu.:4.00   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :5.000   Max.   :5.00   Max.   :5.000   Max.   :4.000   Max.   :5.000  
##                                                 NA's   :12                     
##      CAPT3          CAPT4          CAPT5_1       CAPT5_2       CAPT5_3   
##  Min.   :1.00   Min.   :1.000   Min.   :1     Min.   :1     Min.   :1    
##  1st Qu.:2.00   1st Qu.:1.000   1st Qu.:1     1st Qu.:1     1st Qu.:1    
##  Median :2.00   Median :2.000   Median :1     Median :1     Median :1    
##  Mean   :2.43   Mean   :1.701   Mean   :1     Mean   :1     Mean   :1    
##  3rd Qu.:3.00   3rd Qu.:2.000   3rd Qu.:1     3rd Qu.:1     3rd Qu.:1    
##  Max.   :5.00   Max.   :4.000   Max.   :1     Max.   :1     Max.   :1    
##  NA's   :1                      NA's   :211   NA's   :196   NA's   :252  
##     CAPT5_4       CAPT5_5       CAPT5_6    CAPT5_6_TEXT              CAPT6    
##  Min.   :1     Min.   :1     Min.   :1     Length:452         Yes       : 77  
##  1st Qu.:1     1st Qu.:1     1st Qu.:1     Class :character   No        :169  
##  Median :1     Median :1     Median :1     Mode  :character   Don't know:180  
##  Mean   :1     Mean   :1     Mean   :1                        Yes- text : 26  
##  3rd Qu.:1     3rd Qu.:1     3rd Qu.:1                                        
##  Max.   :1     Max.   :1     Max.   :1                                        
##  NA's   :333   NA's   :397   NA's   :434                                      
##  CAPT6_4_TEXT       CAPT7_1        CAPT7_2        CAPT7_3        CAPT7_4       
##  Length:452         Mode:logical   Mode:logical   Mode:logical   Mode:logical  
##  Class :character   TRUE:323       TRUE:222       TRUE:302       TRUE:103      
##  Mode  :character   NA's:129       NA's:230       NA's:150       NA's:349      
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##  CAPT7_5           CAPT7_6    CAPT7_6_TEXT                RACE    
##  Mode:logical   Min.   :1     Length:452         White      :327  
##  TRUE:210       1st Qu.:1     Class :character   Multiracial: 61  
##  NA's:242       Median :1     Mode  :character   Latina(o)  : 31  
##                 Mean   :1                        Asian      : 13  
##                 3rd Qu.:1                        Black      :  9  
##                 Max.   :1                        (Other)    : 10  
##                 NA's   :435                      NA's       :  1  
##          CSUStatus         CSUResidency         Living          Sex     
##  attend       :450   in state    :301   alone      : 26   female  :327  
##  do not attend:  0   out of state:150   roommate(s):397   male    :122  
##  NA's         :  2   NA's        :  1   parents    : 28   intersex:  2  
##                                         NA's       :  1   NA's    :  1  
##                                                                         
##                                                                         
##                                                                         
##        Orientation            ParentDegree          Employ   
##  heterosexual:325   parent degree   :354   employed    :169  
##  bisexual    : 69   no parent degree: 97   not employed:282  
##  queer       : 21   NA's            :  1   NA's        :  1  
##  gay/lesbian : 16                                            
##  questioning : 12                                            
##  (Other)     :  7                                            
##  NA's        :  2                                            
##     Income             Income_r           Age           Fac1      
##  Length:452         Min.   :     0   < 18 y :  0   Min.   :1.000  
##  Class :character   1st Qu.:     0   18-22 y:435   1st Qu.:1.000  
##  Mode  :character   Median :  4000   > 23 y : 16   Median :1.125  
##                     Mean   : 10402   NA's   :  1   Mean   :1.355  
##                     3rd Qu.: 12000                 3rd Qu.:1.500  
##                     Max.   :160000                 Max.   :3.250  
##                     NA's   :173                                   
##       Fac4            Fac3            Fac2           sumAct     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :0.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.667   1st Qu.:1.000  
##  Median :1.000   Median :1.667   Median :3.333   Median :2.000  
##  Mean   :1.178   Mean   :1.992   Mean   :3.271   Mean   :1.927  
##  3rd Qu.:1.000   3rd Qu.:3.000   3rd Qu.:3.833   3rd Qu.:3.000  
##  Max.   :4.200   Max.   :5.000   Max.   :5.000   Max.   :5.000  
## 
Table 1. Summary of Demographic Variables
Variable Category Count Percent.Var1 Percent.Freq
Sex
Sex female 327 female 72.5
Sex male 122 male 27.1
Sex intersex 2 intersex 0.4
RACE
RACE Asian 13 Asian 2.9
RACE Black 9 Black 2.0
RACE Indigenous 4 Indigenous 0.9
RACE Latina(o) 31 Latina(o) 6.9
RACE Middle Eastern 4 Middle Eastern 0.9
RACE White 327 White 72.5
RACE Multiracial 61 Multiracial 13.5
RACE private 2 private 0.4
Orientation
Orientation heterosexual 325 heterosexual 72.2
Orientation gay/lesbian 16 gay/lesbian 3.6
Orientation bisexual 69 bisexual 15.3
Orientation asexual 3 asexual 0.7
Orientation queer 21 queer 4.7
Orientation questioning 12 questioning 2.7
Orientation not listed 1 not listed 0.2
Orientation private 3 private 0.7
ParentDegree
ParentDegree parent degree 354 parent degree 78.5
ParentDegree no parent degree 97 no parent degree 21.5
CSUResidency
CSUResidency in state 301 in state 66.7
CSUResidency out of state 150 out of state 33.3
Living
Living alone 26 alone 5.8
Living roommate(s) 397 roommate(s) 88.0
Living parents 28 parents 6.2
Table 1. Summary of Demographic Variables
Variable Category Count Percent.Var1 Percent.Freq
CSUResidency
Sex female 327 female 72.5
Sex male 122 male 27.1
Living
Sex intersex 2 intersex 0.4
RACE Asian 13 Asian 2.9
RACE Black 9 Black 2.0
Orientation
RACE Indigenous 4 Indigenous 0.9
RACE Latina(o) 31 Latina(o) 6.9
RACE Middle Eastern 4 Middle Eastern 0.9
RACE White 327 White 72.5
RACE Multiracial 61 Multiracial 13.5
RACE private 2 private 0.4
Orientation heterosexual 325 heterosexual 72.2
Orientation gay/lesbian 16 gay/lesbian 3.6
ParentDegree
Orientation bisexual 69 bisexual 15.3
Orientation asexual 3 asexual 0.7
RACE
Orientation queer 21 queer 4.7
Orientation questioning 12 questioning 2.7
Orientation not listed 1 not listed 0.2
Orientation private 3 private 0.7
ParentDegree parent degree 354 parent degree 78.5
ParentDegree no parent degree 97 no parent degree 21.5
CSUResidency in state 301 in state 66.7
CSUResidency out of state 150 out of state 33.3
Sex
Living alone 26 alone 5.8
Living roommate(s) 397 roommate(s) 88.0
Living parents 28 parents 6.2
Table 2. Summary of Climate Behavior and Psychological Measures
Variable Mean SD Min Median Max
sumAct 1.93 1.22 0 2.000000 5.00
Fac1 1.36 0.51 1 1.125000 3.25
Fac2 3.27 0.83 1 3.333333 5.00
Fac3 1.99 1.10 1 1.666667 5.00
Fac4 1.18 0.43 1 1.000000 4.20

Frequency data for qualitative data

## CAPT5_1 CAPT5_2 CAPT5_3 CAPT5_4 CAPT5_5 CAPT5_6 
##     241     256     200     119      55      18

Histograms

Factor Analysis

## Factor Analysis using method =  minres
## Call: fa(r = df %>% dplyr::select(CAS1:CAS8), nfactors = 1, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       MR1   h2   u2 com
## CAS1 0.70 0.49 0.51   1
## CAS2 0.72 0.51 0.49   1
## CAS3 0.64 0.41 0.59   1
## CAS4 0.75 0.56 0.44   1
## CAS5 0.68 0.47 0.53   1
## CAS6 0.82 0.68 0.32   1
## CAS7 0.60 0.36 0.64   1
## CAS8 0.73 0.53 0.47   1
## 
##                 MR1
## SS loadings    4.02
## Proportion Var 0.50
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  28  with the objective function =  4.12 with Chi Square =  1843.82
## df of  the model are 20  and the objective function was  0.67 
## 
## The root mean square of the residuals (RMSR) is  0.08 
## The df corrected root mean square of the residuals is  0.09 
## 
## The harmonic n.obs is  451 with the empirical chi square  145.76  with prob <  4.1e-21 
## The total n.obs was  452  with Likelihood Chi Square =  301.22  with prob <  4.5e-52 
## 
## Tucker Lewis Index of factoring reliability =  0.783
## RMSEA index =  0.176  and the 90 % confidence intervals are  0.159 0.194
## BIC =  178.95
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.95
## Multiple R square of scores with factors          0.90
## Minimum correlation of possible factor scores     0.80
## 
## Reliability analysis   
## Call: alpha(x = df %>% dplyr::select(CAS1:CAS8))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.88      0.89     0.9       0.5 7.9 0.0082  1.4 0.51      0.5
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.86  0.88  0.89
## Duhachek  0.86  0.88  0.89
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CAS1      0.86      0.87    0.87      0.50 7.0   0.0095 0.0092  0.50
## CAS2      0.86      0.87    0.87      0.50 6.9   0.0096 0.0096  0.50
## CAS3      0.87      0.88    0.88      0.51 7.3   0.0089 0.0089  0.51
## CAS4      0.86      0.87    0.87      0.49 6.7   0.0096 0.0113  0.47
## CAS5      0.87      0.88    0.88      0.50 7.1   0.0092 0.0098  0.50
## CAS6      0.85      0.86    0.87      0.47 6.3   0.0098 0.0088  0.47
## CAS7      0.87      0.88    0.89      0.52 7.6   0.0088 0.0084  0.51
## CAS8      0.86      0.87    0.88      0.49 6.8   0.0094 0.0106  0.51
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean   sd
## CAS1 452  0.79  0.75  0.71   0.68  1.8 0.93
## CAS2 450  0.77  0.76  0.73   0.68  1.4 0.73
## CAS3 452  0.68  0.70  0.66   0.59  1.2 0.59
## CAS4 451  0.78  0.78  0.75   0.70  1.3 0.65
## CAS5 452  0.76  0.73  0.68   0.64  1.5 0.88
## CAS6 452  0.81  0.83  0.82   0.76  1.2 0.57
## CAS7 452  0.62  0.67  0.60   0.55  1.1 0.45
## CAS8 452  0.75  0.76  0.72   0.67  1.2 0.62
## 
## Non missing response frequency for each item
##         1    2    3    4    5 miss
## CAS1 0.51 0.25 0.20 0.04 0.00    0
## CAS2 0.71 0.19 0.08 0.02 0.00    0
## CAS3 0.85 0.09 0.05 0.01 0.00    0
## CAS4 0.80 0.12 0.07 0.01 0.00    0
## CAS5 0.70 0.16 0.10 0.04 0.01    0
## CAS6 0.83 0.12 0.05 0.01 0.00    0
## CAS7 0.89 0.09 0.02 0.01 0.00    0
## CAS8 0.85 0.09 0.05 0.01 0.00    0
## Factor Analysis using method =  minres
## Call: fa(r = df %>% dplyr::select(CAS9:CAS13), nfactors = 1, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS9  0.86 0.75 0.25   1
## CAS10 0.63 0.39 0.61   1
## CAS11 0.88 0.77 0.23   1
## CAS12 0.85 0.72 0.28   1
## CAS13 0.72 0.52 0.48   1
## 
##                 MR1
## SS loadings    3.16
## Proportion Var 0.63
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  10  with the objective function =  2.96 with Chi Square =  1327.66
## df of  the model are 5  and the objective function was  0.05 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.04 
## 
## The harmonic n.obs is  452 with the empirical chi square  7.22  with prob <  0.2 
## The total n.obs was  452  with Likelihood Chi Square =  22.97  with prob <  0.00034 
## 
## Tucker Lewis Index of factoring reliability =  0.973
## RMSEA index =  0.089  and the 90 % confidence intervals are  0.054 0.128
## BIC =  -7.6
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.83
## 
## Reliability analysis   
## Call: alpha(x = df %>% dplyr::select(CAS9:CAS13))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.88      0.89    0.88      0.62 8.1 0.0092  1.2 0.43     0.62
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.86  0.88  0.89
## Duhachek  0.86  0.88  0.89
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CAS9       0.83      0.85    0.82      0.59 5.7    0.014 0.0139  0.59
## CAS10      0.89      0.90    0.87      0.69 8.8    0.008 0.0043  0.68
## CAS11      0.83      0.85    0.82      0.58 5.6    0.013 0.0106  0.60
## CAS12      0.84      0.85    0.83      0.59 5.9    0.012 0.0118  0.60
## CAS13      0.86      0.88    0.86      0.64 7.3    0.011 0.0126  0.66
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean   sd
## CAS9  452  0.88  0.88  0.85   0.80  1.2 0.55
## CAS10 452  0.78  0.74  0.63   0.60  1.3 0.67
## CAS11 452  0.87  0.89  0.86   0.80  1.1 0.50
## CAS12 452  0.85  0.87  0.84   0.78  1.1 0.41
## CAS13 451  0.78  0.80  0.72   0.66  1.1 0.46
## 
## Non missing response frequency for each item
##          1    2    3    4 5 miss
## CAS9  0.86 0.09 0.04 0.01 0    0
## CAS10 0.81 0.10 0.07 0.01 0    0
## CAS11 0.90 0.06 0.03 0.01 0    0
## CAS12 0.91 0.07 0.02 0.00 0    0
## CAS13 0.91 0.06 0.03 0.01 0    0
## Factor Analysis using method =  minres
## Call: fa(r = df %>% dplyr::select(CAS14:CAS16), nfactors = 1, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS14 0.91 0.83 0.17   1
## CAS15 0.93 0.86 0.14   1
## CAS16 0.74 0.54 0.46   1
## 
##                 MR1
## SS loadings    2.23
## Proportion Var 0.74
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  3  with the objective function =  1.92 with Chi Square =  863.62
## df of  the model are 0  and the objective function was  0 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  NA 
## 
## The harmonic n.obs is  451 with the empirical chi square  0  with prob <  NA 
## The total n.obs was  452  with Likelihood Chi Square =  0  with prob <  NA 
## 
## Tucker Lewis Index of factoring reliability =  -Inf
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.85
## 
## Reliability analysis   
## Call: alpha(x = df %>% dplyr::select(CAS14:CAS16))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.88      0.89    0.86      0.73 8.2 0.0097    2 1.1     0.68
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.86  0.88   0.9
## Duhachek  0.86  0.88   0.9
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CAS14      0.81      0.81    0.68      0.68  4.3   0.0178    NA  0.68
## CAS15      0.79      0.80    0.67      0.67  4.1   0.0189    NA  0.67
## CAS16      0.91      0.91    0.84      0.84 10.7   0.0081    NA  0.84
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## CAS14 451  0.91  0.92  0.89   0.82  1.8 1.1
## CAS15 452  0.92  0.93  0.90   0.82  1.9 1.2
## CAS16 452  0.88  0.87  0.73   0.71  2.3 1.4
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## CAS14 0.57 0.15 0.18 0.07 0.02    0
## CAS15 0.59 0.09 0.19 0.10 0.03    0
## CAS16 0.46 0.10 0.20 0.16 0.07    0
## Factor Analysis using method =  minres
## Call: fa(r = df %>% dplyr::select(CAS17:CAS22), nfactors = 1, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS17 0.55 0.30 0.70   1
## CAS18 0.65 0.43 0.57   1
## CAS19 0.55 0.31 0.69   1
## CAS20 0.86 0.73 0.27   1
## CAS21 0.69 0.48 0.52   1
## CAS22 0.65 0.42 0.58   1
## 
##                 MR1
## SS loadings    2.67
## Proportion Var 0.44
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  15  with the objective function =  2.15 with Chi Square =  962.83
## df of  the model are 9  and the objective function was  0.3 
## 
## The root mean square of the residuals (RMSR) is  0.09 
## The df corrected root mean square of the residuals is  0.11 
## 
## The harmonic n.obs is  452 with the empirical chi square  102.88  with prob <  4.1e-18 
## The total n.obs was  452  with Likelihood Chi Square =  133.78  with prob <  2e-24 
## 
## Tucker Lewis Index of factoring reliability =  0.78
## RMSEA index =  0.175  and the 90 % confidence intervals are  0.15 0.202
## BIC =  78.75
## Fit based upon off diagonal values = 0.96
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.93
## Multiple R square of scores with factors          0.86
## Minimum correlation of possible factor scores     0.72
## 
## Reliability analysis   
## Call: alpha(x = df %>% dplyr::select(CAS17:CAS22))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.82      0.82    0.82      0.43 4.5 0.013  3.3 0.83     0.46
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.79  0.82  0.84
## Duhachek  0.79  0.82  0.84
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CAS17      0.81      0.81    0.80      0.46 4.3    0.014 0.014  0.50
## CAS18      0.79      0.79    0.77      0.43 3.8    0.015 0.014  0.46
## CAS19      0.81      0.81    0.80      0.46 4.2    0.014 0.014  0.50
## CAS20      0.75      0.76    0.75      0.38 3.1    0.018 0.015  0.35
## CAS21      0.78      0.78    0.77      0.42 3.6    0.017 0.019  0.43
## CAS22      0.79      0.79    0.79      0.43 3.8    0.016 0.018  0.46
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean   sd
## CAS17 451  0.68  0.65  0.55   0.50  2.7 1.27
## CAS18 452  0.71  0.73  0.67   0.57  3.8 1.08
## CAS19 452  0.63  0.66  0.57   0.49  4.2 0.96
## CAS20 452  0.84  0.84  0.82   0.74  3.3 1.15
## CAS21 452  0.77  0.75  0.70   0.63  2.8 1.24
## CAS22 452  0.72  0.72  0.64   0.58  2.8 1.15
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## CAS17 0.25 0.13 0.32 0.22 0.08    0
## CAS18 0.05 0.06 0.20 0.38 0.31    0
## CAS19 0.04 0.01 0.10 0.39 0.45    0
## CAS20 0.10 0.11 0.33 0.31 0.14    0
## CAS21 0.20 0.21 0.30 0.20 0.09    0
## CAS22 0.16 0.23 0.37 0.16 0.09    0
## Factor Analysis using method =  minres
## Call: fa(r = df_male %>% dplyr::select(CAS1:CAS8), nfactors = 1, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       MR1   h2   u2 com
## CAS1 0.79 0.62 0.38   1
## CAS2 0.73 0.54 0.46   1
## CAS3 0.64 0.42 0.58   1
## CAS4 0.73 0.54 0.46   1
## CAS5 0.65 0.42 0.58   1
## CAS6 0.82 0.67 0.33   1
## CAS7 0.63 0.40 0.60   1
## CAS8 0.86 0.75 0.25   1
## 
##                 MR1
## SS loadings    4.36
## Proportion Var 0.54
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  28  with the objective function =  5.94 with Chi Square =  697.8
## df of  the model are 20  and the objective function was  1.8 
## 
## The root mean square of the residuals (RMSR) is  0.11 
## The df corrected root mean square of the residuals is  0.14 
## 
## The harmonic n.obs is  122 with the empirical chi square  89.2  with prob <  1e-10 
## The total n.obs was  122  with Likelihood Chi Square =  210.85  with prob <  7.9e-34 
## 
## Tucker Lewis Index of factoring reliability =  0.599
## RMSEA index =  0.28  and the 90 % confidence intervals are  0.247 0.316
## BIC =  114.77
## Fit based upon off diagonal values = 0.96
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.83
## Factor Analysis using method =  minres
## Call: fa(r = df_female %>% dplyr::select(CAS1:CAS8), nfactors = 1, 
##     rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       MR1   h2   u2 com
## CAS1 0.67 0.45 0.55   1
## CAS2 0.73 0.53 0.47   1
## CAS3 0.66 0.43 0.57   1
## CAS4 0.76 0.58 0.42   1
## CAS5 0.68 0.46 0.54   1
## CAS6 0.82 0.68 0.32   1
## CAS7 0.59 0.34 0.66   1
## CAS8 0.68 0.46 0.54   1
## 
##                 MR1
## SS loadings    3.94
## Proportion Var 0.49
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  28  with the objective function =  3.97 with Chi Square =  1281.01
## df of  the model are 20  and the objective function was  0.64 
## 
## The root mean square of the residuals (RMSR) is  0.08 
## The df corrected root mean square of the residuals is  0.09 
## 
## The harmonic n.obs is  326 with the empirical chi square  106.45  with prob <  8.7e-14 
## The total n.obs was  327  with Likelihood Chi Square =  205.07  with prob <  1.1e-32 
## 
## Tucker Lewis Index of factoring reliability =  0.793
## RMSEA index =  0.168  and the 90 % confidence intervals are  0.148 0.19
## BIC =  89.27
## Fit based upon off diagonal values = 0.98
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.95
## Multiple R square of scores with factors          0.90
## Minimum correlation of possible factor scores     0.79
## Factor Analysis using method =  minres
## Call: fa(r = df_male %>% dplyr::select(CAS17:CAS22), nfactors = 1, 
##     rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS17 0.49 0.24 0.76   1
## CAS18 0.61 0.37 0.63   1
## CAS19 0.62 0.39 0.61   1
## CAS20 0.80 0.64 0.36   1
## CAS21 0.65 0.42 0.58   1
## CAS22 0.63 0.39 0.61   1
## 
##                 MR1
## SS loadings    2.46
## Proportion Var 0.41
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  15  with the objective function =  1.94 with Chi Square =  229.23
## df of  the model are 9  and the objective function was  0.38 
## 
## The root mean square of the residuals (RMSR) is  0.1 
## The df corrected root mean square of the residuals is  0.13 
## 
## The harmonic n.obs is  122 with the empirical chi square  37.5  with prob <  2.1e-05 
## The total n.obs was  122  with Likelihood Chi Square =  44.56  with prob <  1.1e-06 
## 
## Tucker Lewis Index of factoring reliability =  0.722
## RMSEA index =  0.18  and the 90 % confidence intervals are  0.13 0.235
## BIC =  1.32
## Fit based upon off diagonal values = 0.94
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.91
## Multiple R square of scores with factors          0.83
## Minimum correlation of possible factor scores     0.65
## Factor Analysis using method =  minres
## Call: fa(r = df_female %>% dplyr::select(CAS17:CAS22), nfactors = 1, 
##     rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS17 0.52 0.27 0.73   1
## CAS18 0.68 0.46 0.54   1
## CAS19 0.52 0.28 0.72   1
## CAS20 0.88 0.78 0.22   1
## CAS21 0.68 0.46 0.54   1
## CAS22 0.64 0.41 0.59   1
## 
##                 MR1
## SS loadings    2.66
## Proportion Var 0.44
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  15  with the objective function =  2.15 with Chi Square =  695.67
## df of  the model are 9  and the objective function was  0.29 
## 
## The root mean square of the residuals (RMSR) is  0.08 
## The df corrected root mean square of the residuals is  0.11 
## 
## The harmonic n.obs is  327 with the empirical chi square  66.5  with prob <  7.4e-11 
## The total n.obs was  327  with Likelihood Chi Square =  92.33  with prob <  5.5e-16 
## 
## Tucker Lewis Index of factoring reliability =  0.796
## RMSEA index =  0.168  and the 90 % confidence intervals are  0.138 0.201
## BIC =  40.22
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.93
## Multiple R square of scores with factors          0.87
## Minimum correlation of possible factor scores     0.74
## Factor Analysis using method =  minres
## Call: fa(r = df_male %>% dplyr::select(CAS14:CAS16), nfactors = 1, 
##     rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS14 0.90 0.81 0.19   1
## CAS15 0.95 0.90 0.10   1
## CAS16 0.82 0.67 0.33   1
## 
##                 MR1
## SS loadings    2.38
## Proportion Var 0.79
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  3  with the objective function =  2.27 with Chi Square =  270.9
## df of  the model are 0  and the objective function was  0 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  NA 
## 
## The harmonic n.obs is  122 with the empirical chi square  0  with prob <  NA 
## The total n.obs was  122  with Likelihood Chi Square =  0  with prob <  NA 
## 
## Tucker Lewis Index of factoring reliability =  -Inf
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.97
## Multiple R square of scores with factors          0.94
## Minimum correlation of possible factor scores     0.87
## Factor Analysis using method =  minres
## Call: fa(r = df_female %>% dplyr::select(CAS14:CAS16), nfactors = 1, 
##     rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS14 0.91 0.82 0.18   1
## CAS15 0.92 0.85 0.15   1
## CAS16 0.71 0.50 0.50   1
## 
##                 MR1
## SS loadings    2.17
## Proportion Var 0.72
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  3  with the objective function =  1.81 with Chi Square =  587.06
## df of  the model are 0  and the objective function was  0 
## 
## The root mean square of the residuals (RMSR) is  0 
## The df corrected root mean square of the residuals is  NA 
## 
## The harmonic n.obs is  326 with the empirical chi square  0  with prob <  NA 
## The total n.obs was  327  with Likelihood Chi Square =  0  with prob <  NA 
## 
## Tucker Lewis Index of factoring reliability =  -Inf
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.84
## Factor Analysis using method =  minres
## Call: fa(r = df_male %>% dplyr::select(CAS9:CAS13), nfactors = 1, rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS9  0.80 0.64 0.36   1
## CAS10 0.67 0.45 0.55   1
## CAS11 0.83 0.69 0.31   1
## CAS12 0.72 0.52 0.48   1
## CAS13 0.90 0.81 0.19   1
## 
##                 MR1
## SS loadings    3.13
## Proportion Var 0.63
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  10  with the objective function =  3.09 with Chi Square =  365.75
## df of  the model are 5  and the objective function was  0.26 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.07 
## 
## The harmonic n.obs is  122 with the empirical chi square  6.81  with prob <  0.24 
## The total n.obs was  122  with Likelihood Chi Square =  30.1  with prob <  1.4e-05 
## 
## Tucker Lewis Index of factoring reliability =  0.858
## RMSEA index =  0.203  and the 90 % confidence intervals are  0.137 0.277
## BIC =  6.08
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.91
## Minimum correlation of possible factor scores     0.82
## Factor Analysis using method =  minres
## Call: fa(r = df_female %>% dplyr::select(CAS9:CAS13), nfactors = 1, 
##     rotate = "varimax")
## Standardized loadings (pattern matrix) based upon correlation matrix
##        MR1   h2   u2 com
## CAS9  0.89 0.79 0.21   1
## CAS10 0.61 0.37 0.63   1
## CAS11 0.90 0.82 0.18   1
## CAS12 0.90 0.81 0.19   1
## CAS13 0.67 0.44 0.56   1
## 
##                 MR1
## SS loadings    3.24
## Proportion Var 0.65
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## df null model =  10  with the objective function =  3.38 with Chi Square =  1092.66
## df of  the model are 5  and the objective function was  0.1 
## 
## The root mean square of the residuals (RMSR) is  0.03 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic n.obs is  327 with the empirical chi square  6.93  with prob <  0.23 
## The total n.obs was  327  with Likelihood Chi Square =  31.36  with prob <  8e-06 
## 
## Tucker Lewis Index of factoring reliability =  0.951
## RMSEA index =  0.127  and the 90 % confidence intervals are  0.087 0.171
## BIC =  2.41
## Fit based upon off diagonal values = 1
## Measures of factor score adequacy             
##                                                    MR1
## Correlation of (regression) scores with factors   0.97
## Multiple R square of scores with factors          0.93
## Minimum correlation of possible factor scores     0.87
Table. Summary of Factor Analysis Results by Gender and Full Sample
Variance Explained
RMSEA
TLI
Factor Variance Explained (Full) Variance Explained (Male) Variance Explained (Female) RMSEA (Full) RMSEA (Male) RMSEA (Female) TLI (Full) TLI (Male) TLI (Female)
F1: Cognitive/Emotional Impairment 0.50 0.54 0.49 0.176 0.280 0.168 0.783 0.599 0.793
F2: Behavioral Engagement 0.44 0.41 0.44 0.175 0.180 0.168 0.780 0.722 0.796
F3: Climate Change Experience 0.74 0.79 0.72 NA NA NA NA NA NA
F4: Functional Impairment 0.63 0.63 0.65 0.089 0.203 0.127 0.973 0.858 0.951
##       Fac1            Fac2            Fac3            Fac4      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:2.667   1st Qu.:1.000   1st Qu.:1.000  
##  Median :1.125   Median :3.333   Median :1.667   Median :1.000  
##  Mean   :1.355   Mean   :3.271   Mean   :1.992   Mean   :1.178  
##  3rd Qu.:1.500   3rd Qu.:3.833   3rd Qu.:3.000   3rd Qu.:1.000  
##  Max.   :3.250   Max.   :5.000   Max.   :5.000   Max.   :4.200
##           Fac1      Fac2      Fac3      Fac4
## Fac1 1.0000000 0.3988640 0.5215330 0.7472871
## Fac2 0.3988640 1.0000000 0.5117046 0.2398682
## Fac3 0.5215330 0.5117046 1.0000000 0.3652623
## Fac4 0.7472871 0.2398682 0.3652623 1.0000000
##      Fac1 Fac2 Fac3 Fac4
## Fac1 1.00 0.40 0.52 0.75
## Fac2 0.40 1.00 0.51 0.24
## Fac3 0.52 0.51 1.00 0.37
## Fac4 0.75 0.24 0.37 1.00
##      Fac1     Fac2 Fac3     Fac4
## Fac1    0 0.00e+00    0 0.00e+00
## Fac2    0 0.00e+00    0 2.46e-07
## Fac3    0 0.00e+00    0 0.00e+00
## Fac4    0 2.46e-07    0 0.00e+00

CCA Factor boxplots and regressions by sum of pro-environmental behaviors and adaptation measures

Linear Models of CCA factors on sum of behaviors

## 
## Call:
## lm(formula = sumAct ~ Fac1 + Fac2 + Fac3 + Fac4, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.3125 -0.7431 -0.1486  0.6461  3.9319 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.01059    0.23713  -0.045    0.964    
## Fac1         0.39614    0.17097   2.317    0.021 *  
## Fac2         0.48816    0.07475   6.531 1.78e-10 ***
## Fac3         0.06659    0.06011   1.108    0.269    
## Fac4        -0.27905    0.18334  -1.522    0.129    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.108 on 447 degrees of freedom
## Multiple R-squared:  0.1814, Adjusted R-squared:  0.1741 
## F-statistic: 24.77 on 4 and 447 DF,  p-value: < 2.2e-16

## 
## Call:
## glm(formula = sumAct ~ Fac1, family = quasipoisson, data = df)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.26397    0.07855   3.360 0.000845 ***
## Fac1         0.28105    0.05075   5.538 5.21e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasipoisson family taken to be 0.7385551)
## 
##     Null deviance: 400.89  on 451  degrees of freedom
## Residual deviance: 379.89  on 450  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 5
##             2.5 % 97.5 %
## (Intercept) 1.116  1.519
## Fac1        1.197  1.461
## [1] "For every 1.0 unit increase in Factor 1, Cognitive/Emotional Impairment, there is a 1.3245 increase in the sum of pro-environmental behaviors."

## 
## Call:
## glm(formula = sumAct ~ Fac2, family = quasipoisson, data = df)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.48401    0.13274  -3.646 0.000297 ***
## Fac2         0.33721    0.03723   9.057  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasipoisson family taken to be 0.6958887)
## 
##     Null deviance: 400.89  on 451  degrees of freedom
## Residual deviance: 340.39  on 450  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 5
## [1] "For every 1.0 unit increase in Factor 2, Behavioral Engagement, there is a 1.401 increase in the sum of pro-environmental behaviors."
## [1] 0.6958887

## 
## Call:
## glm(formula = sumAct ~ Fac3, family = quasipoisson, data = df)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.33955    0.06182   5.492 6.65e-08 ***
## Fac3         0.15155    0.02494   6.077 2.61e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasipoisson family taken to be 0.7371004)
## 
##     Null deviance: 400.89  on 451  degrees of freedom
## Residual deviance: 374.59  on 450  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 5
## [1] "For every 1.0 unit increase in Factor 3, Climate Change Experience, there is a 1.1636 increase in the sum of pro-environmental behaviors."

## 
## Call:
## glm(formula = sumAct ~ Fac4, family = quasipoisson, data = df)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.45756    0.08002   5.718 1.96e-08 ***
## Fac4         0.16604    0.06129   2.709    0.007 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for quasipoisson family taken to be 0.7638753)
## 
##     Null deviance: 400.89  on 451  degrees of freedom
## Residual deviance: 395.70  on 450  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 5
## [1] "For every 1.0 unit increase in Factor 4, Functional Impairment, there is a 1.1806 increase in the sum of pro-environmental behaviors."
Table 3. Quasi-Poisson Regression Results: Climate Anxiety Factors and Pro-Environmental Behavior
Model IRR CI Lower CI Upper p-value
Cognitive Emotional Impairment 1.325 1.197 1.461 1e-07
Behavioral Engagement 1.401 1.303 1.508 0e+00
Climate Change Experience 1.164 1.108 1.222 0e+00
Functional Impairment 1.181 1.043 1.327 7e-03
## 
## Call:
## glm.nb(formula = df$sumAct ~ df$Fac2, data = df, init.theta = 40594.24551, 
##     link = log)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.48400    0.15913  -3.042  0.00235 ** 
## df$Fac2      0.33721    0.04463   7.555 4.18e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(40594.25) family taken to be 1)
## 
##     Null deviance: 400.88  on 451  degrees of freedom
## Residual deviance: 340.38  on 450  degrees of freedom
## AIC: 1391.1
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  40594 
##           Std. Err.:  247111 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -1385.121

## 
## Call:
## glm.nb(formula = sumAct ~ df$Fac3, data = df, init.theta = 40114.34058, 
##     link = log)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.33955    0.07201   4.715 2.41e-06 ***
## df$Fac3      0.15155    0.02905   5.217 1.82e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(40114.34) family taken to be 1)
## 
##     Null deviance: 400.88  on 451  degrees of freedom
## Residual deviance: 374.57  on 450  degrees of freedom
## AIC: 1425.3
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  40114 
##           Std. Err.:  275437 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -1419.318

## 
## Call:
## glm.nb(formula = sumAct ~ df$Fac4, data = df, init.theta = 38320.4072, 
##     link = log)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  0.45756    0.09156   4.998  5.8e-07 ***
## df$Fac4      0.16604    0.07013   2.368   0.0179 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(38320.41) family taken to be 1)
## 
##     Null deviance: 400.88  on 451  degrees of freedom
## Residual deviance: 395.69  on 450  degrees of freedom
## AIC: 1446.4
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  38320 
##           Std. Err.:  281256 
## Warning while fitting theta: iteration limit reached 
## 
##  2 x log-likelihood:  -1440.434

Logistic regressions of CCA factor effects on taking adaptive measures

## # weights:  9 (4 variable)
## initial  value 496.572754 
## final  value 476.654950 
## converged
## Call:
## multinom(formula = CAPT6_multi ~ Fac1, data = df)
## 
## Coefficients:
##            (Intercept)       Fac1
## No           1.7263159 -0.9214387
## Don't know   0.8169519 -0.1809020
## 
## Std. Errors:
##            (Intercept)      Fac1
## No           0.3746080 0.2637671
## Don't know   0.3372041 0.2183467
## 
## Residual Deviance: 953.3099 
## AIC: 961.3099
## [1] "Yes"        "No"         "Don't know" "Yes- text"
##            (Intercept)      Fac1
## No            5.619912 0.3979461
## Don't know    2.263590 0.8345171
## 
## Call:
## glm(formula = CAPT6_binary ~ Fac1, family = binomial, data = df)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.8782     0.3094  -6.071 1.27e-09 ***
## Fac1          0.4742     0.2032   2.334   0.0196 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 485.17  on 451  degrees of freedom
## Residual deviance: 479.94  on 450  degrees of freedom
## AIC: 483.94
## 
## Number of Fisher Scoring iterations: 4
## (Intercept)        Fac1 
##    0.152863    1.606698
## 
## Call:
## glm(formula = CAPT6_binary ~ Fac2, family = binomial, data = df)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -2.5186     0.5134  -4.906 9.29e-07 ***
## Fac2          0.3884     0.1468   2.646  0.00814 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 485.17  on 451  degrees of freedom
## Residual deviance: 477.72  on 450  degrees of freedom
## AIC: 481.72
## 
## Number of Fisher Scoring iterations: 4
## (Intercept)        Fac2 
##  0.08056993  1.47457221
## 
## Call:
## glm(formula = CAPT6_binary ~ Fac3, family = binomial, data = df)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.70275    0.23897  -7.125 1.04e-12 ***
## Fac3         0.23328    0.09832   2.373   0.0177 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 485.17  on 451  degrees of freedom
## Residual deviance: 479.63  on 450  degrees of freedom
## AIC: 483.63
## 
## Number of Fisher Scoring iterations: 4
## (Intercept)        Fac3 
##    0.182181    1.262735
## 
## Call:
## glm(formula = CAPT6_binary ~ Fac4, family = binomial, data = df)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  -1.4207     0.3152  -4.507 6.58e-06 ***
## Fac4          0.1689     0.2466   0.685    0.493    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 485.17  on 451  degrees of freedom
## Residual deviance: 484.72  on 450  degrees of freedom
## AIC: 488.72
## 
## Number of Fisher Scoring iterations: 4
## (Intercept)        Fac4 
##   0.2415409   1.1839453

## [1] "For every 1.0 unit increase in Factor 1, Cognitive/Emotional Impairment, there odds of reporting adaptive measures increases by 60.7%."
## [1] "For every 1.0 unit increase in Factor 2, Behavioral engagement, there odds of reporting adaptive measures increases by 47.5%."
## [1] "For every 1.0 unit increase in Factor 3, Climate change experience, there odds of reporting adaptive measures increases by 26.3%."
## [1] "For every 1.0 unit increase in Factor 4, Functional Impairment, there odds of reporting adaptive measures increases by 18.4%."
Table. Logistic Regression Results: Predicting CAPT6 Binary Outcome from Climate Anxiety (Fac1)
Term Odds_Ratio std.error statistic p-value 95% CI Lower 95% CI Upper
(Intercept) 0.153 0.309 -6.071 0.00 0.083 0.280
Fac1 1.607 0.203 2.334 0.02 1.072 2.385
Table. Logistic Regression Results: Predicting CAPT6 Binary from Climate Anxiety Factors
Model Odds_Ratio CI Lower CI Upper p-value
Cognitive Emotional Impairment 1.607 1.072 2.385 0.01960
Behavioral Engagement 1.475 1.113 1.981 0.00814
Climate Change Experience 1.263 1.040 1.531 0.01770
Functional Impairment 1.184 0.709 1.889 0.49300
## R version 4.4.3 (2025-02-28)
## Platform: aarch64-apple-darwin20
## Running under: macOS 26.2
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib 
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## time zone: US/Pacific
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] MASS_7.3-64        kableExtra_1.4.0   broom_1.0.7        nnet_7.3-20       
##  [5] stargazer_5.2.3    tm_0.7-15          NLP_0.3-2          wordcloud_2.6     
##  [9] RColorBrewer_1.1-3 stringr_1.5.1      knitr_1.49         psych_2.4.12      
## [13] lavaan_0.6-19      summarytools_1.0.1 ggplot2_3.5.1      tibble_3.2.1      
## [17] tidyr_1.3.1        dplyr_1.1.4       
## 
## loaded via a namespace (and not attached):
##  [1] gtable_0.3.6      xfun_0.49         bslib_0.8.0       lattice_0.22-6   
##  [5] quadprog_1.5-8    vctrs_0.6.5       tools_4.4.3       generics_0.1.3   
##  [9] stats4_4.4.3      parallel_4.4.3    fansi_1.0.6       pkgconfig_2.0.3  
## [13] Matrix_1.7-2      checkmate_2.3.2   pryr_0.1.6        lifecycle_1.0.4  
## [17] farver_2.1.2      compiler_4.4.3    textshaping_0.4.0 rapportools_1.1  
## [21] munsell_0.5.1     mnormt_2.1.1      codetools_0.2-20  htmltools_0.5.8.1
## [25] sass_0.4.9        yaml_2.3.10       pillar_1.9.0      jquerylib_0.1.4  
## [29] cachem_1.1.0      magick_2.8.5      nlme_3.1-167      tidyselect_1.2.1 
## [33] digest_0.6.37     stringi_1.8.4     slam_0.1-55       reshape2_1.4.4   
## [37] pander_0.6.5      purrr_1.0.2       splines_4.4.3     labeling_0.4.3   
## [41] fastmap_1.2.0     grid_4.4.3        colorspace_2.1-1  cli_3.6.3        
## [45] magrittr_2.0.3    base64enc_0.1-3   utf8_1.2.4        pbivnorm_0.6.0   
## [49] withr_3.0.2       scales_1.3.0      backports_1.5.0   lubridate_1.9.3  
## [53] timechange_0.3.0  rmarkdown_2.29    matrixStats_1.5.0 ragg_1.3.3       
## [57] evaluate_1.0.1    tcltk_4.4.3       viridisLite_0.4.2 mgcv_1.9-1       
## [61] rlang_1.1.4       Rcpp_1.0.13-1     glue_1.8.0        xml2_1.3.6       
## [65] svglite_2.1.3     rstudioapi_0.17.1 jsonlite_1.8.9    R6_2.5.1         
## [69] plyr_1.8.9        systemfonts_1.1.0