sales=data.frame(
billID = c(501,502,503,504,505,506),
customerName = c("aman","riya","karan","neha","rohit","simran"),
gender = factor(c("male","female","male","female","male","female")),
membership = factor(c("Gold","silver","Gold","none","silver","Gold")),
category = factor(c("grocery","electronics","clothing","grocery","electronics","clothing")),
quantity = c(10,1,3,8,2,5),
costPrice = c(50,20000,800,60,18000,700),
sellingPrice = c(70,25000,1000,80,22000,900),
discount = c(100,2000,150,50,500,300),
deliveryType = factor(c("home","store","home","store","home","home"))
)
sales$grossRevenue=sales$quantity*sales$sellingPrice
sales$TotalCost =sales$quantity * sales$costPrice
sales$NetRevenue = sales$grossRevenue-sales$discount
sales$Profit = sales$NetRevenue-sales$TotalCost
gold_home_profit = subset(sales, membership=="Gold" & Profit>5000 & deliveryType=="home")
loss_transactions <- subset(sales, Profit < 0)
electronics_filter <- subset(sales,
category=="electronics" &
quantity>=2 &
discount>1000 &
Profit>0)
premium_customers <- subset(sales, NetRevenue>20000 | membership=="Gold")
print(sales)
## billID customerName gender membership category quantity costPrice
## 1 501 aman male Gold grocery 10 50
## 2 502 riya female silver electronics 1 20000
## 3 503 karan male Gold clothing 3 800
## 4 504 neha female none grocery 8 60
## 5 505 rohit male silver electronics 2 18000
## 6 506 simran female Gold clothing 5 700
## sellingPrice discount deliveryType grossRevenue TotalCost NetRevenue Profit
## 1 70 100 home 700 500 600 100
## 2 25000 2000 store 25000 20000 23000 3000
## 3 1000 150 home 3000 2400 2850 450
## 4 80 50 store 640 480 590 110
## 5 22000 500 home 44000 36000 43500 7500
## 6 900 300 home 4500 3500 4200 700