# -----------------------------
# FASE 1. Generar dataset simulado (abundancias por parcela)
# -----------------------------
etapas <- c("Pionera", "Intermedia", "Tardia", "Madura") # Define 4 etapas sucesionales (categorías)
parcelas <- expand.grid(Etapa = etapas, Parcela = 1:3) %>% # Crea combinaciones: 4 etapas x 3 parcelas
as_tibble() %>% #Convierte a tibble
mutate(ID = paste0(Etapa, "_P", Parcela)) # Crea un ID único por parcela (ej. Pionera_P1)
especies <- paste0("Sp", sprintf("%02d", 1:15)) # Crea nombres Sp01...Sp15 (15 especies)
dirichlet_probs <- function(alpha){ # Define función para generar probabilidades tipo Dirichlet
w <- rgamma(length(alpha), shape = alpha, rate = 1) # Genera pesos positivos con distribución gamma
w / sum(w) # Normaliza para que sumen 1 (probabilidades)
} # Fin de función
alpha_por_etapa <- list( # Lista con "alpha" por etapa (controla dominancia)
Pionera = c(6,6,5, 2,2, 1,1,1,1,1, 0.5,0.5,0.5,0.5,0.5), # Pionera: pocas especies dominan mucho
Intermedia = c(3,3,3, 3,3, 2,2,2,1.5,1.5, 1,1,1,1,1), # Intermedia: dominancia más equilibrada
Tardia = c(1.5,1.5,1.5, 2,2, 2.5,2.5,2.5,2,2, 2,1.8,1.8,1.6,1.6), # Tardía: muchas especies con peso medio
Madura = c(1.2,1.2,1.2, 1.5,1.5, 1.8,1.8,1.8,1.8,1.8, 2,2,2,2,2) # Madura: más equidad, varias especies importantes
)
simular_parcela <- function(etapa, total_ind = sample(90:150, 1)){ # Función que simula una parcela (conteos por especie)
alpha <- alpha_por_etapa[[etapa]] # Selecciona el alpha que corresponde a la etapa
p <- dirichlet_probs(alpha) # Genera probabilidades para las 15 especies (suman 1)
as.integer(rmultinom(1, size = total_ind, prob = p)) # Genera conteos multinomiales (enteros) según p
} # Fin de función
parcelas
## # A tibble: 12 × 3
## Etapa Parcela ID
## <fct> <int> <chr>
## 1 Pionera 1 Pionera_P1
## 2 Intermedia 1 Intermedia_P1
## 3 Tardia 1 Tardia_P1
## 4 Madura 1 Madura_P1
## 5 Pionera 2 Pionera_P2
## 6 Intermedia 2 Intermedia_P2
## 7 Tardia 2 Tardia_P2
## 8 Madura 2 Madura_P2
## 9 Pionera 3 Pionera_P3
## 10 Intermedia 3 Intermedia_P3
## 11 Tardia 3 Tardia_P3
## 12 Madura 3 Madura_P3
abund <- parcelas %>% # Toma la tabla parcelas (Etapa, Parcela, ID)
rowwise() %>% # Indica que operaciones se harán fila por fila
mutate(conteos = list(simular_parcela(Etapa))) %>% # Para cada fila, simula conteos de 15 especies
unnest_wider(conteos, names_sep = "_") %>% # Expande la lista a 15 columnas (conteos_1...conteos_15)
rename_with(~ especies, starts_with("conteos_")) %>% # Renombra esas columnas a Sp01...Sp15
ungroup() # Quita el modo fila-por-fila
# fila-por-fila
head(abund)
## # A tibble: 6 × 18
## Etapa Parcela ID Sp01 Sp02 Sp03 Sp04 Sp05 Sp06 Sp07 Sp08 Sp09
## <fct> <int> <chr> <int> <int> <int> <int> <int> <int> <int> <int> <int>
## 1 Pionera 1 Pion… 8 22 57 2 6 1 7 3 4
## 2 Intermedia 1 Inte… 3 11 22 16 4 7 6 13 3
## 3 Tardia 1 Tard… 0 1 3 3 17 7 18 6 8
## 4 Madura 1 Madu… 1 5 1 1 9 1 1 23 3
## 5 Pionera 2 Pion… 35 29 9 2 12 8 0 0 4
## 6 Intermedia 2 Inte… 11 19 29 19 1 5 10 3 19
## # ℹ 6 more variables: Sp10 <int>, Sp11 <int>, Sp12 <int>, Sp13 <int>,
## # Sp14 <int>, Sp15 <int>
mat <- abund %>% select(all_of(especies)) %>% as.matrix() # Extrae solo especies y las convierte a matriz
rownames(mat) <- abund$ID # Pone como nombres de fila los ID de parcelas
head(mat)
## Sp01 Sp02 Sp03 Sp04 Sp05 Sp06 Sp07 Sp08 Sp09 Sp10 Sp11 Sp12 Sp13
## Pionera_P1 8 22 57 2 6 1 7 3 4 7 0 3 0
## Intermedia_P1 3 11 22 16 4 7 6 13 3 8 3 6 5
## Tardia_P1 0 1 3 3 17 7 18 6 8 6 8 22 4
## Madura_P1 1 5 1 1 9 1 1 23 3 6 8 12 4
## Pionera_P2 35 29 9 2 12 8 0 0 4 6 0 1 6
## Intermedia_P2 11 19 29 19 1 5 10 3 19 2 5 0 12
## Sp14 Sp15
## Pionera_P1 0 0
## Intermedia_P1 3 1
## Tardia_P1 2 3
## Madura_P1 10 7
## Pionera_P2 1 0
## Intermedia_P2 0 9
# -----------------------------
# FASE 2. Tema 2: Diversidad alfa (por parcela)
# -----------------------------
riqueza <- vegan::specnumber(mat) # Calcula riqueza S (número de especies con abundancia > 0)
head(riqueza)
## Pionera_P1 Intermedia_P1 Tardia_P1 Madura_P1 Pionera_P2
## 11 15 14 15 11
## Intermedia_P2
## 13
shannon <- vegan::diversity(mat, index = "shannon") # Calcula índice de Shannon H'
simpson <- vegan::diversity(mat, index = "simpson") # Calcula índice de Simpson (diversidad)
pielou <- shannon / log(pmax(riqueza, 1)) # Calcula equitatividad de Pielou (H'/ln(S))
res_alfa <- abund %>% # Parte del dataset con abundancias
select(ID, Etapa, Parcela) %>% # Se queda con variables de identificación
mutate(Riqueza = riqueza, # Agrega riqueza por parcela
Shannon = shannon, # Agrega Shannon por parcela
Simpson = simpson, # Agrega Simpson por parcela
Pielou = pielou) # Agrega Pielou por parcela
print(res_alfa) # Imprime tabla de diversidad alfa por parcela
## # A tibble: 12 × 7
## ID Etapa Parcela Riqueza Shannon Simpson Pielou
## <chr> <fct> <int> <int> <dbl> <dbl> <dbl>
## 1 Pionera_P1 Pionera 1 11 1.73 0.724 0.722
## 2 Intermedia_P1 Intermedia 1 15 2.45 0.895 0.905
## 3 Tardia_P1 Tardia 1 14 2.34 0.880 0.885
## 4 Madura_P1 Madura 1 15 2.32 0.875 0.856
## 5 Pionera_P2 Pionera 2 11 1.92 0.808 0.802
## 6 Intermedia_P2 Intermedia 2 13 2.29 0.883 0.895
## 7 Tardia_P2 Tardia 2 15 2.50 0.906 0.924
## 8 Madura_P2 Madura 2 14 2.29 0.879 0.869
## 9 Pionera_P3 Pionera 3 12 2.00 0.821 0.804
## 10 Intermedia_P3 Intermedia 3 15 2.27 0.859 0.839
## 11 Tardia_P3 Tardia 3 14 2.50 0.909 0.949
## 12 Madura_P3 Madura 3 14 2.39 0.890 0.906
res_etapa <- res_alfa %>% # Usa resultados por parcela
group_by(Etapa) %>% # Agrupa por etapa sucesional
summarise( # Resume con promedios y desviaciones estándar
Riqueza_prom = mean(Riqueza), Riqueza_sd = sd(Riqueza), # Media y sd de riqueza
Shannon_prom = mean(Shannon), Shannon_sd = sd(Shannon), # Media y sd de Shannon
Simpson_prom = mean(Simpson), Simpson_sd = sd(Simpson), # Media y sd de Simpson
Pielou_prom = mean(Pielou), Pielou_sd = sd(Pielou), # Media y sd de Pielou
.groups = "drop" # Quita agrupamiento para devolver tibble normal
)
print(res_etapa)
## # A tibble: 4 × 9
## Etapa Riqueza_prom Riqueza_sd Shannon_prom Shannon_sd Simpson_prom Simpson_sd
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Pione… 11.3 0.577 1.88 0.137 0.785 0.0526
## 2 Inter… 14.3 1.15 2.34 0.0982 0.879 0.0184
## 3 Tardia 14.3 0.577 2.45 0.0971 0.899 0.0157
## 4 Madura 14.3 0.577 2.33 0.0500 0.881 0.00761
## # ℹ 2 more variables: Pielou_prom <dbl>, Pielou_sd <dbl>
ggplot(res_alfa, aes(x = Etapa, y = Shannon)) + # Inicia gráfico: etapa vs Shannon
geom_boxplot() + # Dibuja caja y bigotes (distribución)
geom_jitter(width = 0.12) + # Pone puntos con leve dispersión horizontal
theme_minimal() + # Estilo simple del gráfico
labs(title = "Diversidad (Shannon) por etapa de sucesión") # Título del gráfico
