library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.2.0     ✔ readr     2.1.6
## ✔ forcats   1.0.1     ✔ stringr   1.6.0
## ✔ lubridate 1.9.5     ✔ tibble    3.3.1
## ✔ purrr     1.2.1     ✔ tidyr     1.3.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ✖ purrr::lift()   masks caret::lift()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
df <- read.csv("C:\\Users\\ferpa\\Downloads\\heart.csv")
# Explorar datos
summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal           target      
##  Min.   :0.000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:0.0000  
##  Median :2.000   Median :1.0000  
##  Mean   :2.324   Mean   :0.5132  
##  3rd Qu.:3.000   3rd Qu.:1.0000  
##  Max.   :3.000   Max.   :1.0000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : int  0 0 0 0 0 1 0 0 0 0 ...
df <- df[, c("target","age","sex","cp","thalach","oldpeak")]

# Eliminar valores faltantes
df <- na.omit(df)

# Convertir variable objetivo a factor
df$target <- as.factor(df$target)

# Convertir variables categóricas
df$sex <- as.factor(df$sex)
df$cp <- as.factor(df$cp)

str(df)
## 'data.frame':    1025 obs. of  6 variables:
##  $ target : Factor w/ 2 levels "0","1": 1 1 1 1 1 2 1 1 1 1 ...
##  $ age    : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex    : Factor w/ 2 levels "0","1": 2 2 2 2 1 1 2 2 2 2 ...
##  $ cp     : Factor w/ 4 levels "0","1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ thalach: int  168 155 125 161 106 122 140 145 144 116 ...
##  $ oldpeak: num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
modelo <- glm(target ~ ., data=df, family=binomial)

summary(modelo)
## 
## Call:
## glm(formula = target ~ ., family = binomial, data = df)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.359747   1.056669  -0.340 0.733515    
## age         -0.039298   0.010644  -3.692 0.000222 ***
## sex1        -1.844887   0.208584  -8.845  < 2e-16 ***
## cp1          1.732941   0.256082   6.767 1.31e-11 ***
## cp2          2.204962   0.212669  10.368  < 2e-16 ***
## cp3          2.288578   0.314506   7.277 3.42e-13 ***
## thalach      0.023697   0.004608   5.143 2.71e-07 ***
## oldpeak     -0.754388   0.092440  -8.161 3.33e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1420.24  on 1024  degrees of freedom
## Residual deviance:  856.15  on 1017  degrees of freedom
## AIC: 872.15
## 
## Number of Fisher Scoring iterations: 5
prueba <- data.frame(
  age = 35,
  sex = as.factor(0),
  cp = as.factor(1),
  thalach = 150,
  oldpeak = 2.4
)

probabilidad <- predict(modelo, newdata=prueba, type="response")

cbind(prueba, Probabilidad_Enfermedad = probabilidad)
##   age sex cp thalach oldpeak Probabilidad_Enfermedad
## 1  35   0  1     150     2.4                0.850923

Conclusión

Para el caso de prueba (35 años, sexo=0, cp=1, thalach=150, oldpeak=2.4), el modelo estima una probabilidad de enfermedad cardíaca de 0.8509 (≈85.1%), lo que indica un riesgo alto según el modelo (muy por encima de un umbral típico de 0.50).