Teoría

La regresión logística es un modelo estadístico de clasificación binaria, que estima la probabilidad de que ocurra un evento (valor 1) frente a que no ocurra (valor 0), en función de variables independientes.

Instalar paquetes y llamar librerías

# library(tidyverse)

Crear la base de datos

df <- read.csv("/Users/marceloreyesp/Desktop/Negocios/6to Semestre LIT/Clase Codigos/Clase Codigo R/heart.csv")

Entender la base de datos

summary(df)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal           target      
##  Min.   :0.000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:0.0000  
##  Median :2.000   Median :1.0000  
##  Mean   :2.324   Mean   :0.5132  
##  3rd Qu.:3.000   3rd Qu.:1.0000  
##  Max.   :3.000   Max.   :1.0000
str(df)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : int  0 0 0 0 0 1 0 0 0 0 ...
df <- df[, c("target", "age", "sex", "cp")]
df <- na.omit(df)
df$target <- as.factor(df$target)
df$sex <- as.factor(df$sex)
df$cp <- as.factor(df$cp)

Crear el modelo

modelo <- glm(target ~ ., data=df, family=binomial)
summary(modelo)
## 
## Call:
## glm(formula = target ~ ., family = binomial, data = df)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  3.739627   0.573892   6.516 7.21e-11 ***
## age         -0.066961   0.009559  -7.005 2.47e-12 ***
## sex1        -1.791697   0.189715  -9.444  < 2e-16 ***
## cp1          2.561954   0.239299  10.706  < 2e-16 ***
## cp2          2.411452   0.192865  12.503  < 2e-16 ***
## cp3          2.274265   0.287080   7.922 2.34e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1420.24  on 1024  degrees of freedom
## Residual deviance:  989.79  on 1019  degrees of freedom
## AIC: 1001.8
## 
## Number of Fisher Scoring iterations: 5

Probar el modelo

prueba <- data.frame(age=c(55, 45), sex=as.factor(c(1, 0)), cp=as.factor(c(0, 2)))
probabilidad <- predict(modelo, newdata=prueba, type="response")
cbind(prueba, Probabilidad_Enfermedad=probabilidad)
##   age sex cp Probabilidad_Enfermedad
## 1  55   1  0               0.1499607
## 2  45   0  2               0.9584272

```

LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMb2fDrXN0aWNhIEhlYXJ0IgphdXRob3I6ICJNYXJjZWxvIFJleWVzIgpkYXRlOiAiMjAyNi0wMi0xOSIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBib290c3RyYXAKLS0tCgoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZSI+IFRlb3LDrWEgPC9zcGFuPgpMYSAqKnJlZ3Jlc2nDs24gbG9nw61zdGljYSoqIGVzIHVuIG1vZGVsbyBlc3RhZMOtc3RpY28gZGUgY2xhc2lmaWNhY2nDs24gYmluYXJpYSwgcXVlIGVzdGltYSBsYSBwcm9iYWJpbGlkYWQgZGUgcXVlIG9jdXJyYSB1biBldmVudG8gKHZhbG9yIDEpIGZyZW50ZSBhIHF1ZSBubyBvY3VycmEgKHZhbG9yIDApLCBlbiBmdW5jacOzbiBkZSB2YXJpYWJsZXMgaW5kZXBlbmRpZW50ZXMuICAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWUiPiBJbnN0YWxhciBwYXF1ZXRlcyB5IGxsYW1hciBsaWJyZXLDrWFzIDwvc3Bhbj4KYGBge3J9CiMgbGlicmFyeSh0aWR5dmVyc2UpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZSI+IENyZWFyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0KZGYgPC0gcmVhZC5jc3YoIi9Vc2Vycy9tYXJjZWxvcmV5ZXNwL0Rlc2t0b3AvTmVnb2Npb3MvNnRvIFNlbWVzdHJlIExJVC9DbGFzZSBDb2RpZ29zL0NsYXNlIENvZGlnbyBSL2hlYXJ0LmNzdiIpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZSI+IEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeShkZikKc3RyKGRmKQpkZiA8LSBkZlssIGMoInRhcmdldCIsICJhZ2UiLCAic2V4IiwgImNwIildCmRmIDwtIG5hLm9taXQoZGYpCmRmJHRhcmdldCA8LSBhcy5mYWN0b3IoZGYkdGFyZ2V0KQpkZiRzZXggPC0gYXMuZmFjdG9yKGRmJHNleCkKZGYkY3AgPC0gYXMuZmFjdG9yKGRmJGNwKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWUiPiBDcmVhciBlbCBtb2RlbG8gPC9zcGFuPgpgYGB7cn0KbW9kZWxvIDwtIGdsbSh0YXJnZXQgfiAuLCBkYXRhPWRmLCBmYW1pbHk9Ymlub21pYWwpCnN1bW1hcnkobW9kZWxvKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWUiPiBQcm9iYXIgZWwgbW9kZWxvIDwvc3Bhbj4KYGBge3J9CnBydWViYSA8LSBkYXRhLmZyYW1lKGFnZT1jKDU1LCA0NSksIHNleD1hcy5mYWN0b3IoYygxLCAwKSksIGNwPWFzLmZhY3RvcihjKDAsIDIpKSkKcHJvYmFiaWxpZGFkIDwtIHByZWRpY3QobW9kZWxvLCBuZXdkYXRhPXBydWViYSwgdHlwZT0icmVzcG9uc2UiKQpjYmluZChwcnVlYmEsIFByb2JhYmlsaWRhZF9FbmZlcm1lZGFkPXByb2JhYmlsaWRhZCkKYGBgCmBgYA==