Teoría
La regresión logística es un modelo estadístico de clasificación binaria, que estima la probabilidad de que ocurra un evento (valor 1) frente a que no ocurra (valor 0), en función de variables independientes.
Instalar paquetes y llamar librerías
#install.packages("caret")
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
#install.packages("tidyverse")
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.2.0 ✔ readr 2.1.6
## ✔ forcats 1.0.1 ✔ stringr 1.6.0
## ✔ lubridate 1.9.5 ✔ tibble 3.3.1
## ✔ purrr 1.2.1 ✔ tidyr 1.3.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ purrr::lift() masks caret::lift()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Crear la base de datos
df <- read.csv("C:/Users/joseo/Downloads/heart.csv")
Entender la base de datos
summary(df)
## age sex cp trestbps
## Min. :29.00 Min. :0.0000 Min. :0.0000 Min. : 94.0
## 1st Qu.:48.00 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:120.0
## Median :56.00 Median :1.0000 Median :1.0000 Median :130.0
## Mean :54.43 Mean :0.6956 Mean :0.9424 Mean :131.6
## 3rd Qu.:61.00 3rd Qu.:1.0000 3rd Qu.:2.0000 3rd Qu.:140.0
## Max. :77.00 Max. :1.0000 Max. :3.0000 Max. :200.0
## chol fbs restecg thalach
## Min. :126 Min. :0.0000 Min. :0.0000 Min. : 71.0
## 1st Qu.:211 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:132.0
## Median :240 Median :0.0000 Median :1.0000 Median :152.0
## Mean :246 Mean :0.1493 Mean :0.5298 Mean :149.1
## 3rd Qu.:275 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.:166.0
## Max. :564 Max. :1.0000 Max. :2.0000 Max. :202.0
## exang oldpeak slope ca
## Min. :0.0000 Min. :0.000 Min. :0.000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:1.000 1st Qu.:0.0000
## Median :0.0000 Median :0.800 Median :1.000 Median :0.0000
## Mean :0.3366 Mean :1.072 Mean :1.385 Mean :0.7541
## 3rd Qu.:1.0000 3rd Qu.:1.800 3rd Qu.:2.000 3rd Qu.:1.0000
## Max. :1.0000 Max. :6.200 Max. :2.000 Max. :4.0000
## thal target
## Min. :0.000 Min. :0.0000
## 1st Qu.:2.000 1st Qu.:0.0000
## Median :2.000 Median :1.0000
## Mean :2.324 Mean :0.5132
## 3rd Qu.:3.000 3rd Qu.:1.0000
## Max. :3.000 Max. :1.0000
str(df)
## 'data.frame': 1025 obs. of 14 variables:
## $ age : int 52 53 70 61 62 58 58 55 46 54 ...
## $ sex : int 1 1 1 1 0 0 1 1 1 1 ...
## $ cp : int 0 0 0 0 0 0 0 0 0 0 ...
## $ trestbps: int 125 140 145 148 138 100 114 160 120 122 ...
## $ chol : int 212 203 174 203 294 248 318 289 249 286 ...
## $ fbs : int 0 1 0 0 1 0 0 0 0 0 ...
## $ restecg : int 1 0 1 1 1 0 2 0 0 0 ...
## $ thalach : int 168 155 125 161 106 122 140 145 144 116 ...
## $ exang : int 0 1 1 0 0 0 0 1 0 1 ...
## $ oldpeak : num 1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
## $ slope : int 2 0 0 2 1 1 0 1 2 1 ...
## $ ca : int 2 0 0 1 3 0 3 1 0 2 ...
## $ thal : int 3 3 3 3 2 2 1 3 3 2 ...
## $ target : int 0 0 0 0 0 1 0 0 0 0 ...
df <- df[, c("target", "age", "sex", "cp", "trestbps")]
df <- na.omit(df)
df$target <- as.factor(df$target)
df$sex <- as.factor(df$sex)
df$cp <- as.factor(df$cp)
Crear el modelo
modelo <- glm(target ~ ., data=df, family=binomial)
summary(modelo)
##
## Call:
## glm(formula = target ~ ., family = binomial, data = df)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.597948 0.771247 7.258 3.92e-13 ***
## age -0.058606 0.009789 -5.987 2.13e-09 ***
## sex1 -1.876644 0.194347 -9.656 < 2e-16 ***
## cp1 2.559724 0.241903 10.582 < 2e-16 ***
## cp2 2.427250 0.195103 12.441 < 2e-16 ***
## cp3 2.452060 0.296854 8.260 < 2e-16 ***
## trestbps -0.017126 0.004637 -3.693 0.000222 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1420.24 on 1024 degrees of freedom
## Residual deviance: 975.64 on 1018 degrees of freedom
## AIC: 989.64
##
## Number of Fisher Scoring iterations: 5
Probar el modelo
prueba <- data.frame(
age = c(45, 60),
sex = as.factor(c(1, 0)),
cp = as.factor(c(0, 3)),
trestbps = c(130, 150)
)
probabilidad <- predict(modelo, newdata=prueba, type="response")
cbind(prueba, Probabilidad_Enfermedad=probabilidad)
## age sex cp trestbps Probabilidad_Enfermedad
## 1 45 1 0 130 0.241899
## 2 60 0 3 150 0.877052
Conclusiones
Variable objetivo: target (1 = enfermedad, 0 = no enfermedad).
Todas las variables del modelo son estadísticamente significativas (p < 0.001).
cp (tipo de dolor de pecho) es la variable más influyente.
cp1, cp2 y cp3 aumentan fuertemente la probabilidad respecto a cp0.
Es el factor que más incrementa el riesgo en el modelo.
sex1 tiene coeficiente negativo.
La categoría 1 presenta menor probabilidad comparada con la categoría base.
Impacto fuerte y significativo.
age tiene coeficiente negativo.
A mayor edad, menor probabilidad de enfermedad en este modelo.
Efecto moderado pero significativo.
trestbps (presión en reposo) tiene coeficiente negativo.
A mayor presión, ligera reducción en probabilidad.
Impacto menor comparado con cp y sex.
El modelo reduce la deviance de 1420.24 a 975.64.
Indica buen ajuste para este nivel de análisis.
Caso 1 (45 años, sex=1, cp=0, presión=130):
Probabilidad ≈ 24%.
Perfil de bajo riesgo.
Caso 2 (60 años, sex=0, cp=3, presión=150):
Probabilidad ≈ 87%.
Perfil de alto riesgo.
El tipo de dolor de pecho es el principal diferenciador entre bajo y alto riesgo.
El modelo permite estimar probabilidades individuales útiles para clasificación binaria.