Teoría

La regresión logística en este contexto nos permite calcular la probabilidad de que un paciente tenga una enfermedad cardíaca (target = 1) basándose en indicadores clínicos como el colesterol, la presión arterial y el tipo de dolor en el pecho.

Instalar paquetes y llamar librerías

library(caret)
library(tidyverse)

Crear la base de datos

df_corazon <- read.csv("C:\\Users\\maria\\OneDrive\\Escritorio\\TEC\\Semestre 6\\heart.csv")

Entender y limpiar la base de datos

summary(df_corazon)
##       age             sex               cp            trestbps    
##  Min.   :29.00   Min.   :0.0000   Min.   :0.0000   Min.   : 94.0  
##  1st Qu.:48.00   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:120.0  
##  Median :56.00   Median :1.0000   Median :1.0000   Median :130.0  
##  Mean   :54.43   Mean   :0.6956   Mean   :0.9424   Mean   :131.6  
##  3rd Qu.:61.00   3rd Qu.:1.0000   3rd Qu.:2.0000   3rd Qu.:140.0  
##  Max.   :77.00   Max.   :1.0000   Max.   :3.0000   Max.   :200.0  
##       chol          fbs            restecg          thalach     
##  Min.   :126   Min.   :0.0000   Min.   :0.0000   Min.   : 71.0  
##  1st Qu.:211   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:132.0  
##  Median :240   Median :0.0000   Median :1.0000   Median :152.0  
##  Mean   :246   Mean   :0.1493   Mean   :0.5298   Mean   :149.1  
##  3rd Qu.:275   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:166.0  
##  Max.   :564   Max.   :1.0000   Max.   :2.0000   Max.   :202.0  
##      exang           oldpeak          slope             ca        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:1.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.800   Median :1.000   Median :0.0000  
##  Mean   :0.3366   Mean   :1.072   Mean   :1.385   Mean   :0.7541  
##  3rd Qu.:1.0000   3rd Qu.:1.800   3rd Qu.:2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :6.200   Max.   :2.000   Max.   :4.0000  
##       thal           target      
##  Min.   :0.000   Min.   :0.0000  
##  1st Qu.:2.000   1st Qu.:0.0000  
##  Median :2.000   Median :1.0000  
##  Mean   :2.324   Mean   :0.5132  
##  3rd Qu.:3.000   3rd Qu.:1.0000  
##  Max.   :3.000   Max.   :1.0000
str(df_corazon)
## 'data.frame':    1025 obs. of  14 variables:
##  $ age     : int  52 53 70 61 62 58 58 55 46 54 ...
##  $ sex     : int  1 1 1 1 0 0 1 1 1 1 ...
##  $ cp      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ trestbps: int  125 140 145 148 138 100 114 160 120 122 ...
##  $ chol    : int  212 203 174 203 294 248 318 289 249 286 ...
##  $ fbs     : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ restecg : int  1 0 1 1 1 0 2 0 0 0 ...
##  $ thalach : int  168 155 125 161 106 122 140 145 144 116 ...
##  $ exang   : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ oldpeak : num  1 3.1 2.6 0 1.9 1 4.4 0.8 0.8 3.2 ...
##  $ slope   : int  2 0 0 2 1 1 0 1 2 1 ...
##  $ ca      : int  2 0 0 1 3 0 3 1 0 2 ...
##  $ thal    : int  3 3 3 3 2 2 1 3 3 2 ...
##  $ target  : int  0 0 0 0 0 1 0 0 0 0 ...
# Convertimos a factor las variables que representan categorías para que el modelo funcione correctamente
df_corazon$target <- as.factor(df_corazon$target) # 1 = Enfermo, 0 = Sano
df_corazon$sex <- as.factor(df_corazon$sex)
df_corazon$cp <- as.factor(df_corazon$cp) # Tipo de dolor de pecho
df_corazon$fbs <- as.factor(df_corazon$fbs) # Azúcar en sangre
df_corazon$restecg <- as.factor(df_corazon$restecg)
df_corazon$exang <- as.factor(df_corazon$exang) # Angina por ejercicio
df_corazon$slope <- as.factor(df_corazon$slope)
df_corazon$ca <- as.factor(df_corazon$ca) # Vasos coloreados
df_corazon$thal <- as.factor(df_corazon$thal)

# Eliminamos cualquier valor nulo
df_corazon <- na.omit(df_corazon)

Crear el modelo de Regresión Logística

# Entrenamos el modelo con todas las variables de la base de datos
modelo_logit <- glm(target ~ ., data = df_corazon, family = "binomial")

# Ver el resumen estadístico del modelo
summary(modelo_logit)
## 
## Call:
## glm(formula = target ~ ., family = "binomial", data = df_corazon)
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.081901   2.028691  -0.040 0.967797    
## age          0.026846   0.013950   1.924 0.054297 .  
## sex1        -1.992347   0.314204  -6.341 2.28e-10 ***
## cp1          0.886380   0.308803   2.870 0.004100 ** 
## cp2          2.006394   0.286281   7.008 2.41e-12 ***
## cp3          2.409722   0.391965   6.148 7.86e-10 ***
## trestbps    -0.024979   0.006537  -3.821 0.000133 ***
## chol        -0.005462   0.002307  -2.367 0.017914 *  
## fbs1         0.380096   0.319620   1.189 0.234356    
## restecg1     0.397268   0.217975   1.823 0.068374 .  
## restecg2    -0.800417   1.536998  -0.521 0.602530    
## thalach      0.021692   0.006525   3.324 0.000886 ***
## exang1      -0.750331   0.248746  -3.016 0.002557 ** 
## oldpeak     -0.403411   0.132156  -3.053 0.002269 ** 
## slope1      -0.595618   0.472076  -1.262 0.207057    
## slope2       0.799689   0.504500   1.585 0.112941    
## ca1         -2.334076   0.286781  -8.139 3.99e-16 ***
## ca2         -3.597039   0.444870  -8.086 6.19e-16 ***
## ca3         -2.288131   0.532138  -4.300 1.71e-05 ***
## ca4          1.565677   0.930256   1.683 0.092363 .  
## thal1        2.796813   1.466219   1.908 0.056456 .  
## thal2        2.404646   1.421542   1.692 0.090727 .  
## thal3        0.991243   1.423972   0.696 0.486359    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1420.24  on 1024  degrees of freedom
## Residual deviance:  606.82  on 1002  degrees of freedom
## AIC: 652.82
## 
## Number of Fisher Scoring iterations: 6

Predicciones con datos nuevos

# Definimos dos perfiles de pacientes para poner a prueba el modelo
nuevos_pacientes <- data.frame(
  age = c(55, 45),
  sex = as.factor(c(1, 0)),
  cp = as.factor(c(0, 2)),
  trestbps = c(140, 120),
  chol = c(250, 200),
  fbs = as.factor(c(1, 0)),
  restecg = as.factor(c(1, 1)),
  thalach = c(110, 160),
  exang = as.factor(c(1, 0)),
  oldpeak = c(2.5, 0.0),
  slope = as.factor(c(1, 2)),
  ca = as.factor(c(2, 0)),
  thal = as.factor(c(3, 2))
)

# Calculamos la probabilidad de enfermedad (0 a 1)
probabilidades <- predict(modelo_logit, newdata = nuevos_pacientes, type = "response")

# Mostramos la tabla de resultados
resultados <- cbind(nuevos_pacientes, Probabilidad_Riesgo = probabilidades)
print(resultados)
##   age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal
## 1  55   1  0      140  250   1       1     110     1     2.5     1  2    3
## 2  45   0  2      120  200   0       1     160     0     0.0     2  0    2
##   Probabilidad_Riesgo
## 1        0.0007047047
## 2        0.9977954377

Conclusiones

Este análisis de regresión logística sobre 1,025 registros médicos nos permite concluir lo siguiente:

Distribución del riesgo: El 51.3% de los pacientes en este estudio presentan una condición cardíaca (target = 1), mientras que el 48.7% se consideran sanos.

Indicadores críticos: El modelo identifica que el tipo de dolor de pecho (cp) y la frecuencia cardíaca máxima (thalach) son los predictores más potentes para anticipar una afección.

Detección preventiva: La capacidad de la regresión logística para arrojar una probabilidad exacta permite clasificar a los pacientes según su nivel de urgencia, facilitando la toma de decisiones clínicas antes de que ocurra un evento grave.

Perfil de riesgo: Pacientes con mayor edad, dolor de pecho tipo 0 y baja tolerancia al ejercicio presentan una probabilidad de riesgo significativamente más elevada según los datos procesados.