Instalar paquetes y llamar librerías

# install.packages("rpart")
library(rpart)
# install.packages("rpart.plot")
library(rpart.plot)

Importar la base de datos

#file.choose()
casas <- read.csv("HousePriceData.csv")

Entender la base de datos

summary(casas)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 
str(casas)
## 'data.frame':    905 obs. of  10 variables:
##  $ Observation  : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Dist_Taxi    : int  9796 8294 11001 8301 10510 6665 13153 5882 7495 8233 ...
##  $ Dist_Market  : int  5250 8186 14399 11188 12629 5142 11869 9948 11589 7067 ...
##  $ Dist_Hospital: int  10703 12694 16991 12289 13921 9972 17811 13315 13370 11400 ...
##  $ Carpet       : int  1659 1461 1340 1451 1770 1442 1542 1261 1090 1030 ...
##  $ Builtup      : int  1961 1752 1609 1748 2111 1733 1858 1507 1321 1235 ...
##  $ Parking      : chr  "Open" "Not Provided" "Not Provided" "Covered" ...
##  $ City_Category: chr  "CAT B" "CAT B" "CAT A" "CAT B" ...
##  $ Rainfall     : int  530 210 720 620 450 760 1030 1020 680 1130 ...
##  $ House_Price  : int  6649000 3982000 5401000 5373000 4662000 4526000 7224000 3772000 4631000 4415000 ...
head(casas)
##   Observation Dist_Taxi Dist_Market Dist_Hospital Carpet Builtup      Parking
## 1           1      9796        5250         10703   1659    1961         Open
## 2           2      8294        8186         12694   1461    1752 Not Provided
## 3           3     11001       14399         16991   1340    1609 Not Provided
## 4           4      8301       11188         12289   1451    1748      Covered
## 5           5     10510       12629         13921   1770    2111 Not Provided
## 6           6      6665        5142          9972   1442    1733         Open
##   City_Category Rainfall House_Price
## 1         CAT B      530     6649000
## 2         CAT B      210     3982000
## 3         CAT A      720     5401000
## 4         CAT B      620     5373000
## 5         CAT B      450     4662000
## 6         CAT B      760     4526000

Limpiar datos: eliminar outliers

# Observación 361 tiene House_Price = 150,000,000 (outlier extremo)
# El resto de los precios están entre ~3.5M y ~11.6M
casas <- casas[casas$House_Price < 20000000, ]
nrow(casas)
## [1] 904

Crear árbol de decisión

casas <- casas[, c("Dist_Taxi", "Dist_Market", "Dist_Hospital",
                   "Carpet", "Builtup", "Parking", "City_Category",
                   "Rainfall", "House_Price")]

casas$Parking       <- as.factor(casas$Parking)
casas$City_Category <- as.factor(casas$City_Category)

str(casas)
## 'data.frame':    904 obs. of  9 variables:
##  $ Dist_Taxi    : int  9796 8294 11001 8301 10510 6665 13153 5882 7495 8233 ...
##  $ Dist_Market  : int  5250 8186 14399 11188 12629 5142 11869 9948 11589 7067 ...
##  $ Dist_Hospital: int  10703 12694 16991 12289 13921 9972 17811 13315 13370 11400 ...
##  $ Carpet       : int  1659 1461 1340 1451 1770 1442 1542 1261 1090 1030 ...
##  $ Builtup      : int  1961 1752 1609 1748 2111 1733 1858 1507 1321 1235 ...
##  $ Parking      : Factor w/ 4 levels "Covered","No Parking",..: 4 3 3 1 3 4 2 4 3 4 ...
##  $ City_Category: Factor w/ 3 levels "CAT A","CAT B",..: 2 2 1 2 2 2 1 3 2 3 ...
##  $ Rainfall     : int  530 210 720 620 450 760 1030 1020 680 1130 ...
##  $ House_Price  : int  6649000 3982000 5401000 5373000 4662000 4526000 7224000 3772000 4631000 4415000 ...
options(scipen = 999)

arbol_casas <- rpart(House_Price ~ ., data = casas)
rpart.plot(arbol_casas)

prp(arbol_casas, extra = 1, prefix = "precio\n")

Conclusiones

En conclusión, los factores que más influyen en el precio de una casa según el árbol de decisión son:

  • City_Category es la primera variable de división, indicando que la ubicación (categoría de ciudad) es el predictor más importante del precio.
  • Las casas en CAT A tienden a tener precios más altos, especialmente cuando el área construida (Builtup) es mayor.
  • Las casas en CAT B y CAT C presentan precios más bajos en promedio, y dentro de estas categorías variables como Carpet o Dist_Hospital refinan aún más la predicción.
LS0tCnRpdGxlOiAiSG91c2UgUHJpY2UiCmF1dGhvcjogIiIKZGF0ZTogIiIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6IGNvc21vCi0tLQoKPGNlbnRlcj4KIVtdKCkKPC9jZW50ZXI+CgojIDxzcGFuIHN0eWxlPSJjb2xvcjpibHVlIj4gSW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hcyA8L3NwYW4+CmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CiMgaW5zdGFsbC5wYWNrYWdlcygicnBhcnQiKQpsaWJyYXJ5KHJwYXJ0KQojIGluc3RhbGwucGFja2FnZXMoInJwYXJ0LnBsb3QiKQpsaWJyYXJ5KHJwYXJ0LnBsb3QpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZSI+IEltcG9ydGFyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0KI2ZpbGUuY2hvb3NlKCkKY2FzYXMgPC0gcmVhZC5jc3YoIkhvdXNlUHJpY2VEYXRhLmNzdiIpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZSI+IEVudGVuZGVyIGxhIGJhc2UgZGUgZGF0b3MgPC9zcGFuPgpgYGB7cn0Kc3VtbWFyeShjYXNhcykKc3RyKGNhc2FzKQpoZWFkKGNhc2FzKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWUiPiBMaW1waWFyIGRhdG9zOiBlbGltaW5hciBvdXRsaWVycyA8L3NwYW4+CmBgYHtyfQojIE9ic2VydmFjacOzbiAzNjEgdGllbmUgSG91c2VfUHJpY2UgPSAxNTAsMDAwLDAwMCAob3V0bGllciBleHRyZW1vKQojIEVsIHJlc3RvIGRlIGxvcyBwcmVjaW9zIGVzdMOhbiBlbnRyZSB+My41TSB5IH4xMS42TQpjYXNhcyA8LSBjYXNhc1tjYXNhcyRIb3VzZV9QcmljZSA8IDIwMDAwMDAwLCBdCm5yb3coY2FzYXMpCmBgYAoKIyA8c3BhbiBzdHlsZT0iY29sb3I6Ymx1ZSI+IENyZWFyIMOhcmJvbCBkZSBkZWNpc2nDs24gPC9zcGFuPgpgYGB7cn0KY2FzYXMgPC0gY2FzYXNbLCBjKCJEaXN0X1RheGkiLCAiRGlzdF9NYXJrZXQiLCAiRGlzdF9Ib3NwaXRhbCIsCiAgICAgICAgICAgICAgICAgICAiQ2FycGV0IiwgIkJ1aWx0dXAiLCAiUGFya2luZyIsICJDaXR5X0NhdGVnb3J5IiwKICAgICAgICAgICAgICAgICAgICJSYWluZmFsbCIsICJIb3VzZV9QcmljZSIpXQoKY2FzYXMkUGFya2luZyAgICAgICA8LSBhcy5mYWN0b3IoY2FzYXMkUGFya2luZykKY2FzYXMkQ2l0eV9DYXRlZ29yeSA8LSBhcy5mYWN0b3IoY2FzYXMkQ2l0eV9DYXRlZ29yeSkKCnN0cihjYXNhcykKCm9wdGlvbnMoc2NpcGVuID0gOTk5KQoKYXJib2xfY2FzYXMgPC0gcnBhcnQoSG91c2VfUHJpY2UgfiAuLCBkYXRhID0gY2FzYXMpCnJwYXJ0LnBsb3QoYXJib2xfY2FzYXMpCnBycChhcmJvbF9jYXNhcywgZXh0cmEgPSAxLCBwcmVmaXggPSAicHJlY2lvXG4iKQpgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOmJsdWUiPiBDb25jbHVzaW9uZXMgPC9zcGFuPgpFbiBjb25jbHVzacOzbiwgbG9zIGZhY3RvcmVzIHF1ZSBtw6FzIGluZmx1eWVuIGVuIGVsIHByZWNpbyBkZSB1bmEgY2FzYSBzZWfDum4gZWwgw6FyYm9sIGRlIGRlY2lzacOzbiBzb246CgoqICoqQ2l0eV9DYXRlZ29yeSoqIGVzIGxhIHByaW1lcmEgdmFyaWFibGUgZGUgZGl2aXNpw7NuLCBpbmRpY2FuZG8gcXVlIGxhIHViaWNhY2nDs24gKGNhdGVnb3LDrWEgZGUgY2l1ZGFkKSBlcyBlbCBwcmVkaWN0b3IgbcOhcyBpbXBvcnRhbnRlIGRlbCBwcmVjaW8uCiogTGFzIGNhc2FzIGVuICoqQ0FUIEEqKiB0aWVuZGVuIGEgdGVuZXIgcHJlY2lvcyBtw6FzIGFsdG9zLCBlc3BlY2lhbG1lbnRlIGN1YW5kbyBlbCDDoXJlYSBjb25zdHJ1aWRhIChgQnVpbHR1cGApIGVzIG1heW9yLgoqIExhcyBjYXNhcyBlbiAqKkNBVCBCIHkgQ0FUIEMqKiBwcmVzZW50YW4gcHJlY2lvcyBtw6FzIGJham9zIGVuIHByb21lZGlvLCB5IGRlbnRybyBkZSBlc3RhcyBjYXRlZ29yw61hcyB2YXJpYWJsZXMgY29tbyBgQ2FycGV0YCBvIGBEaXN0X0hvc3BpdGFsYCByZWZpbmFuIGHDum4gbcOhcyBsYSBwcmVkaWNjacOzbi4K