Q1.

library(expm)
## Loading required package: Matrix
## 
## Attaching package: 'expm'
## The following object is masked from 'package:Matrix':
## 
##     expm
A <- matrix(c(25,-2,4,-2,4,1,4,1,9), 3, 3, byrow=TRUE)
A
##      [,1] [,2] [,3]
## [1,]   25   -2    4
## [2,]   -2    4    1
## [3,]    4    1    9
E <- eigen(A)
E$values
## [1] 26.078452  8.495796  3.425752
Inv <- solve(A)
Inv
##             [,1]        [,2]        [,3]
## [1,]  0.04611331  0.02898551 -0.02371542
## [2,]  0.02898551  0.27536232 -0.04347826
## [3,] -0.02371542 -0.04347826  0.12648221
B <- sqrtm(Inv)
B%*%B
##             [,1]        [,2]        [,3]
## [1,]  0.04611331  0.02898551 -0.02371542
## [2,]  0.02898551  0.27536232 -0.04347826
## [3,] -0.02371542 -0.04347826  0.12648221
lm <- diag(E$values)
P <- E$vectors
P%*%lm%*%t(P)
##      [,1] [,2] [,3]
## [1,]   25   -2    4
## [2,]   -2    4    1
## [3,]    4    1    9
SQ <- sqrtm(A)
SQ%*%SQ
##      [,1] [,2] [,3]
## [1,]   25   -2    4
## [2,]   -2    4    1
## [3,]    4    1    9

Q2.

A <- matrix(c(9,-2,-2,6), 2, 2, byrow=TRUE)
A
##      [,1] [,2]
## [1,]    9   -2
## [2,]   -2    6
E <- eigen(A)
E$values
## [1] 10  5
E$vectors
##            [,1]       [,2]
## [1,] -0.8944272 -0.4472136
## [2,]  0.4472136 -0.8944272
E$vectors[,1]%*%t(E$vectors[,1])
##      [,1] [,2]
## [1,]  0.8 -0.4
## [2,] -0.4  0.2
E$vectors[,2]%*%t(E$vectors[,2])
##      [,1] [,2]
## [1,]  0.2  0.4
## [2,]  0.4  0.8
E$vectors%*%diag(E$values) %*%t(E$vectors)
##      [,1] [,2]
## [1,]    9   -2
## [2,]   -2    6

\[ 10\begin{bmatrix} 0.8 & -0.4 \\ -0.4 & 0.2 \end{bmatrix} + 5\begin{bmatrix} 0.2 & 0.4 \\ 0.4 & 0.8 \end{bmatrix} \]

Q3.

A <- matrix(c(25,-2,4,-2,4,1,4,1,9), 3, 3, byrow=TRUE)
diag(A)
## [1] 25  4  9
sqrtm(diag(diag(A)))
##      [,1] [,2] [,3]
## [1,]    5    0    0
## [2,]    0    2    0
## [3,]    0    0    3
cov2cor(A)
##            [,1]       [,2]      [,3]
## [1,]  1.0000000 -0.2000000 0.2666667
## [2,] -0.2000000  1.0000000 0.1666667
## [3,]  0.2666667  0.1666667 1.0000000

Q4.

covr <- diag(c(3,3,3,3))
covr
##      [,1] [,2] [,3] [,4]
## [1,]    3    0    0    0
## [2,]    0    3    0    0
## [3,]    0    0    3    0
## [4,]    0    0    0    3
A <- matrix(c(1,-1,0,0,1,1,-2,0,1,1,1,-3), 3, 4, byrow=TRUE)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1   -1    0    0
## [2,]    1    1   -2    0
## [3,]    1    1    1   -3
mu <- matrix(c(3,2,-2,0), 4, 1, byrow=TRUE)
mu
##      [,1]
## [1,]    3
## [2,]    2
## [3,]   -2
## [4,]    0
A%*%mu
##      [,1]
## [1,]    1
## [2,]    9
## [3,]    3
A%*%covr%*%t(A)
##      [,1] [,2] [,3]
## [1,]    6    0    0
## [2,]    0   18    0
## [3,]    0    0   36

Each of the linear combinations have zero covariances, as seen by the Cov(Ax) we found which only has numbers on the diagonal. Those being the variances of each Ax.

Q5.

\[ \Sigma^{-1/2}\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \Sigma^{-1/2}\Sigma\Sigma^{-1/2}) = \mathcal{N}(\mathbf{0}, \mathbf{Q}\Lambda^{-1/2}\mathbf{Q}^\top\mathbf{Q}\Lambda\mathbf{Q}^\top\mathbf{Q}\Lambda^{-1/2}\mathbf{Q}^\top) \] \[ \qquad\qquad\qquad\qquad\qquad\qquad\qquad = \mathcal{N}(\mathbf{0}, \mathbf{Q}\Lambda^{-1/2}\Lambda\Lambda^{-1/2}\mathbf{Q}^\top) = \mathcal{N}(\mathbf{0}, \mathbf{Q}\mathbf{Q}^\top) = \mathcal{N}(\mathbf{0}, \mathbf{I}_p) \] Therefore, \[ X^\top\Sigma^{-1}X = (\Sigma^{-1/2}X)^\top(\Sigma^{-1/2}X) \sim \chi^2_p \]

Q6.

E[X] = E[3\(X_1\)-2\(X_2\)+\(X_3\)] = 3E[\(X_1\)]-2E[\(X_2\)]+E[\(X_3\)] = (3(2)) - (2(-3)) + 1 = 6 + 6 + 1 = 13

Cov(X) = Cov(3\(X_1\)-2\(X_2\)+\(X_3\)) = 9Cov(\(X_1\)) + 4Cov(\(X_2\)) + Cov(\(X_3\)) - 6Cov(\(X_1\),\(X_2\)) - 2Cov(\(X_2\),\(X_3\)) = 9(1) + 4(3) - 6(1) - 2(2) + 2 = 5

So, X follows a normal distribution with mean = 13 and variance = 5.

Q7.

library(MASS)
Sig <- matrix(c(1,1,1,1,3,2,1,2,2), 3, 3, byrow=TRUE)
Sig
##      [,1] [,2] [,3]
## [1,]    1    1    1
## [2,]    1    3    2
## [3,]    1    2    2
mun <- matrix(c(2,-3,1), 1, 3, byrow=TRUE)
mun
##      [,1] [,2] [,3]
## [1,]    2   -3    1
mvrnorm(n=100, mu=mun, Sigma=Sig)
##              [,1]       [,2]        [,3]
##   [1,]  2.3769072 -3.8022287  0.67927117
##   [2,]  2.8121345 -2.3858826  1.51808193
##   [3,]  0.5427505 -3.7667466 -0.74777526
##   [4,]  0.9022711 -5.7630559 -0.36282428
##   [5,]  4.6683065  0.9457601  4.29174438
##   [6,] -0.4873659 -5.0468999 -1.55689576
##   [7,]  2.4096913 -2.7348166  1.49763075
##   [8,]  4.1634869 -0.1602428  3.72943398
##   [9,]  3.3449334 -1.4738125  2.85329741
##  [10,]  0.9267578 -1.3854292  1.32781759
##  [11,]  2.4441280 -4.1141280  1.47153080
##  [12,] -0.6034607 -6.2829383 -0.58108332
##  [13,]  2.4977472 -2.1784651  2.62538691
##  [14,]  2.6269220 -2.2263561  1.86415685
##  [15,]  3.9574999 -1.6842188  1.94392455
##  [16,]  0.6234990 -3.8359612  0.23888569
##  [17,]  3.1792919 -4.4348679  0.86160346
##  [18,]  2.8606617 -4.1429598  0.41745803
##  [19,]  3.5367355 -0.9397996  2.85773491
##  [20,]  1.0645574 -3.6158340  0.33188889
##  [21,]  2.1175881 -1.9400208  0.59095521
##  [22,]  1.1734328 -5.0658330 -1.38885026
##  [23,]  0.5652790 -5.0311559 -0.42608539
##  [24,]  2.5976596 -1.9807694  1.46141722
##  [25,]  1.9486238 -2.4598526  0.85651282
##  [26,]  0.8760408 -4.5872967 -1.06832266
##  [27,]  2.5238365 -1.7994215  0.76059917
##  [28,]  4.7224709 -0.3780642  4.45923887
##  [29,]  3.8017517 -3.2560666  0.76080742
##  [30,]  0.1646429 -3.6154488  0.67072960
##  [31,]  2.1291733 -4.4085951  0.02760084
##  [32,]  3.3692766 -2.5945001  1.07490447
##  [33,]  1.5591462 -4.3762859  0.49703596
##  [34,]  1.0498793 -2.4309113  0.33956877
##  [35,]  2.5042414 -4.0087583  2.20717500
##  [36,]  2.9411905 -3.0490442  0.66785853
##  [37,]  0.5471877 -3.8440516 -0.10052473
##  [38,]  3.0239777 -4.1686970  0.43682398
##  [39,]  2.3926222 -3.1504494  1.02567819
##  [40,]  0.1755333 -6.4047311 -2.31980020
##  [41,]  3.7873176 -1.9813476  2.35051659
##  [42,]  2.1324222 -0.9420295  3.03829055
##  [43,]  2.5083254 -3.7050782  2.08872463
##  [44,]  2.3965690 -1.2026981  2.65750893
##  [45,]  2.5366661 -2.5469773  1.39173783
##  [46,]  3.4986215 -0.7297347  3.58607632
##  [47,]  2.4070826 -3.7882981  2.22505777
##  [48,]  1.9138290 -3.7368599  1.08384508
##  [49,]  3.8720630 -4.3127000  2.02858036
##  [50,]  1.2093045 -3.7356670  0.79006550
##  [51,]  1.6207370 -5.4621482 -0.74344449
##  [52,]  2.5113580 -3.1875717  2.79153366
##  [53,]  2.8321805  0.1098860  2.54417673
##  [54,]  1.1324378 -3.3145793  0.62202849
##  [55,]  3.1259417 -1.4050760  3.18759422
##  [56,]  1.7275307 -2.4493007  1.53818187
##  [57,]  1.0891497 -5.5106388 -1.03305975
##  [58,]  2.4247322 -2.3293467  0.36653226
##  [59,]  2.1604353 -2.5252917  1.45493972
##  [60,]  1.3882703 -3.0494442  1.26369914
##  [61,]  1.8043284 -5.6757220 -0.62831410
##  [62,]  1.4476699 -3.0358717  0.72899185
##  [63,]  0.8268250 -2.6752629  0.25040627
##  [64,]  3.2276639 -2.4404583  2.25035247
##  [65,]  0.7268224 -2.2877365 -0.46879968
##  [66,]  2.5236475 -4.3799829  1.05576466
##  [67,]  4.4768919  2.0085720  6.01299092
##  [68,]  2.8230409 -0.7773724  3.10499315
##  [69,]  1.8190918 -5.9821129 -0.15826919
##  [70,]  0.8699412 -4.7755101  0.14356103
##  [71,]  2.4068765 -2.9359900  1.94174969
##  [72,]  3.0532191 -0.2437066  3.54908590
##  [73,]  2.8929926 -2.7365869  2.07077706
##  [74,]  2.7010246 -3.7379791  1.50371553
##  [75,]  3.0316001 -3.2115182  1.60382039
##  [76,] -0.2483000 -3.5343431 -1.48646756
##  [77,]  2.8031077 -2.0647857  1.42393060
##  [78,]  2.0419343 -3.1931870  0.22103038
##  [79,]  1.3479309 -3.9552413  0.57202598
##  [80,]  1.5912353 -3.8988121  1.06224014
##  [81,]  1.4817359 -4.0180357  1.34200951
##  [82,]  0.3262046 -5.1625191 -0.18204045
##  [83,]  0.9996796 -5.6607590 -0.73617238
##  [84,]  1.1199066 -2.7652038  0.21597840
##  [85,]  1.2747338 -3.3015216  0.21150347
##  [86,]  0.6468893 -2.5329120  0.49612811
##  [87,]  1.4730682 -4.7612501 -0.20217078
##  [88,]  1.6208512 -3.5294566  0.84644599
##  [89,]  2.4457240 -1.8760914  2.17164569
##  [90,] -0.1801747 -7.0107378 -2.80008337
##  [91,]  2.0757575 -2.6484666  2.04887370
##  [92,]  1.1096680 -5.5526943 -1.41228705
##  [93,]  1.7127258 -3.7796973  1.43912545
##  [94,]  1.0839349 -4.3600006 -0.01285655
##  [95,]  2.3805904 -4.6713308  0.97473439
##  [96,]  0.7790854 -5.4298371 -1.05264877
##  [97,]  2.5307414 -1.7725410  1.73050726
##  [98,]  2.0870693 -2.9676472  2.20968310
##  [99,]  2.0486155 -1.9458749  2.30495447
## [100,]  1.6524113 -3.3668725  0.55022689

Q8.

Sigm <- matrix(c(1,-2,0,-2,5,0,0,0,2), 3, 3, byrow=TRUE)
Sigm
##      [,1] [,2] [,3]
## [1,]    1   -2    0
## [2,]   -2    5    0
## [3,]    0    0    2
muy <- matrix(c(-3,1,4), 3, 1, byrow=TRUE)
muy
##      [,1]
## [1,]   -3
## [2,]    1
## [3,]    4
#Only ones with covariance are X(1) and X(2), which is -2

Cov(\(\frac{X_1+X_2}{2}\), \(X_3\)) = \(\frac{1}{2}\)Cov(\(X_1\),\(X_3\))+\(\frac{1}{2}\)Cov(\(X_2\),\(X_3\)) = \(\frac{1}{2}\)(0) + \(\frac{1}{2}\)(0) = 0 Since their covariance is 0, they are independent.

Cov(\(X_2\), \(X_2\) - \(X_1\) - \(X_3\)) = Var(\(X_2\)) - Cov(\(X_1\),\(X_2\)) - Cov(\(X_2\),\(X_3\)) = 5 - (-2) - 0 = 7 Since their covariance is 7, they are not independent.

Q9.

x5 <- c(12,9,5,8,8,12,12,21,11,13,10,12,18,11,8,9,7,16,13,9, 14,7,13,5,10,7,11,7,9,7,10,12,8,10,6,9,6,13,9,8,11,6)
x6 <- c(8,5,6,15,10,12,15,14,11,9,3,7,10,7,10,10,7,4,2,5,4,6,11,2,23,6,11,10,8,2,7,8,4,24,9,10,12,18,25,6,14,5)
comb <- cbind(x5,x6)
Xf <- as.matrix(comb)
Xf
##       x5 x6
##  [1,] 12  8
##  [2,]  9  5
##  [3,]  5  6
##  [4,]  8 15
##  [5,]  8 10
##  [6,] 12 12
##  [7,] 12 15
##  [8,] 21 14
##  [9,] 11 11
## [10,] 13  9
## [11,] 10  3
## [12,] 12  7
## [13,] 18 10
## [14,] 11  7
## [15,]  8 10
## [16,]  9 10
## [17,]  7  7
## [18,] 16  4
## [19,] 13  2
## [20,]  9  5
## [21,] 14  4
## [22,]  7  6
## [23,] 13 11
## [24,]  5  2
## [25,] 10 23
## [26,]  7  6
## [27,] 11 11
## [28,]  7 10
## [29,]  9  8
## [30,]  7  2
## [31,] 10  7
## [32,] 12  8
## [33,]  8  4
## [34,] 10 24
## [35,]  6  9
## [36,]  9 10
## [37,]  6 12
## [38,] 13 18
## [39,]  9 25
## [40,]  8  6
## [41,] 11 14
## [42,]  6  5
muf <- colMeans(Xf)
muf
##        x5        x6 
## 10.047619  9.404762
sigmaf <- cov(Xf)
sigmaf
##           x5        x6
## x5 11.363531  3.126597
## x6  3.126597 30.978513
#Distances
d <- NULL
for (i in 1:42){
 d <- c(d, t(Xf[i,]-muf) %*%solve(sigmaf) %*%(Xf[i,]-muf))
}
d
##  [1]  0.4606524  0.6592206  2.3770610  1.6282902  0.4135364  0.4760726
##  [7]  1.1848895 10.6391792  0.1388339  0.8162468  1.3566301  0.6228096
## [13]  5.6494392  0.3159498  0.4135364  0.1224973  0.8987982  4.7646873
## [19]  3.0089122  0.6592206  2.7741416  1.0360061  0.7874152  3.4437748
## [25]  6.1488606  1.0360061  0.1388339  0.8856041  0.1379719  2.2488867
## [31]  0.1901188  0.4606524  1.1471939  7.0857237  1.4584229  0.1224973
## [37]  1.8984708  2.7782596  8.4730649  0.6370218  0.7032485  1.8013611
#Proportion
n <- nrow(Xf)

p <- ((1:n)-0.5)/n
p
##  [1] 0.01190476 0.03571429 0.05952381 0.08333333 0.10714286 0.13095238
##  [7] 0.15476190 0.17857143 0.20238095 0.22619048 0.25000000 0.27380952
## [13] 0.29761905 0.32142857 0.34523810 0.36904762 0.39285714 0.41666667
## [19] 0.44047619 0.46428571 0.48809524 0.51190476 0.53571429 0.55952381
## [25] 0.58333333 0.60714286 0.63095238 0.65476190 0.67857143 0.70238095
## [31] 0.72619048 0.75000000 0.77380952 0.79761905 0.82142857 0.84523810
## [37] 0.86904762 0.89285714 0.91666667 0.94047619 0.96428571 0.98809524
#Chi-Square Plot
chsq <- qchisq(p,df=2, lower.tail=TRUE)
plot(sort(d),chsq)

Q10.

X <- as.matrix(iris[,1:4])
X
##        Sepal.Length Sepal.Width Petal.Length Petal.Width
##   [1,]          5.1         3.5          1.4         0.2
##   [2,]          4.9         3.0          1.4         0.2
##   [3,]          4.7         3.2          1.3         0.2
##   [4,]          4.6         3.1          1.5         0.2
##   [5,]          5.0         3.6          1.4         0.2
##   [6,]          5.4         3.9          1.7         0.4
##   [7,]          4.6         3.4          1.4         0.3
##   [8,]          5.0         3.4          1.5         0.2
##   [9,]          4.4         2.9          1.4         0.2
##  [10,]          4.9         3.1          1.5         0.1
##  [11,]          5.4         3.7          1.5         0.2
##  [12,]          4.8         3.4          1.6         0.2
##  [13,]          4.8         3.0          1.4         0.1
##  [14,]          4.3         3.0          1.1         0.1
##  [15,]          5.8         4.0          1.2         0.2
##  [16,]          5.7         4.4          1.5         0.4
##  [17,]          5.4         3.9          1.3         0.4
##  [18,]          5.1         3.5          1.4         0.3
##  [19,]          5.7         3.8          1.7         0.3
##  [20,]          5.1         3.8          1.5         0.3
##  [21,]          5.4         3.4          1.7         0.2
##  [22,]          5.1         3.7          1.5         0.4
##  [23,]          4.6         3.6          1.0         0.2
##  [24,]          5.1         3.3          1.7         0.5
##  [25,]          4.8         3.4          1.9         0.2
##  [26,]          5.0         3.0          1.6         0.2
##  [27,]          5.0         3.4          1.6         0.4
##  [28,]          5.2         3.5          1.5         0.2
##  [29,]          5.2         3.4          1.4         0.2
##  [30,]          4.7         3.2          1.6         0.2
##  [31,]          4.8         3.1          1.6         0.2
##  [32,]          5.4         3.4          1.5         0.4
##  [33,]          5.2         4.1          1.5         0.1
##  [34,]          5.5         4.2          1.4         0.2
##  [35,]          4.9         3.1          1.5         0.2
##  [36,]          5.0         3.2          1.2         0.2
##  [37,]          5.5         3.5          1.3         0.2
##  [38,]          4.9         3.6          1.4         0.1
##  [39,]          4.4         3.0          1.3         0.2
##  [40,]          5.1         3.4          1.5         0.2
##  [41,]          5.0         3.5          1.3         0.3
##  [42,]          4.5         2.3          1.3         0.3
##  [43,]          4.4         3.2          1.3         0.2
##  [44,]          5.0         3.5          1.6         0.6
##  [45,]          5.1         3.8          1.9         0.4
##  [46,]          4.8         3.0          1.4         0.3
##  [47,]          5.1         3.8          1.6         0.2
##  [48,]          4.6         3.2          1.4         0.2
##  [49,]          5.3         3.7          1.5         0.2
##  [50,]          5.0         3.3          1.4         0.2
##  [51,]          7.0         3.2          4.7         1.4
##  [52,]          6.4         3.2          4.5         1.5
##  [53,]          6.9         3.1          4.9         1.5
##  [54,]          5.5         2.3          4.0         1.3
##  [55,]          6.5         2.8          4.6         1.5
##  [56,]          5.7         2.8          4.5         1.3
##  [57,]          6.3         3.3          4.7         1.6
##  [58,]          4.9         2.4          3.3         1.0
##  [59,]          6.6         2.9          4.6         1.3
##  [60,]          5.2         2.7          3.9         1.4
##  [61,]          5.0         2.0          3.5         1.0
##  [62,]          5.9         3.0          4.2         1.5
##  [63,]          6.0         2.2          4.0         1.0
##  [64,]          6.1         2.9          4.7         1.4
##  [65,]          5.6         2.9          3.6         1.3
##  [66,]          6.7         3.1          4.4         1.4
##  [67,]          5.6         3.0          4.5         1.5
##  [68,]          5.8         2.7          4.1         1.0
##  [69,]          6.2         2.2          4.5         1.5
##  [70,]          5.6         2.5          3.9         1.1
##  [71,]          5.9         3.2          4.8         1.8
##  [72,]          6.1         2.8          4.0         1.3
##  [73,]          6.3         2.5          4.9         1.5
##  [74,]          6.1         2.8          4.7         1.2
##  [75,]          6.4         2.9          4.3         1.3
##  [76,]          6.6         3.0          4.4         1.4
##  [77,]          6.8         2.8          4.8         1.4
##  [78,]          6.7         3.0          5.0         1.7
##  [79,]          6.0         2.9          4.5         1.5
##  [80,]          5.7         2.6          3.5         1.0
##  [81,]          5.5         2.4          3.8         1.1
##  [82,]          5.5         2.4          3.7         1.0
##  [83,]          5.8         2.7          3.9         1.2
##  [84,]          6.0         2.7          5.1         1.6
##  [85,]          5.4         3.0          4.5         1.5
##  [86,]          6.0         3.4          4.5         1.6
##  [87,]          6.7         3.1          4.7         1.5
##  [88,]          6.3         2.3          4.4         1.3
##  [89,]          5.6         3.0          4.1         1.3
##  [90,]          5.5         2.5          4.0         1.3
##  [91,]          5.5         2.6          4.4         1.2
##  [92,]          6.1         3.0          4.6         1.4
##  [93,]          5.8         2.6          4.0         1.2
##  [94,]          5.0         2.3          3.3         1.0
##  [95,]          5.6         2.7          4.2         1.3
##  [96,]          5.7         3.0          4.2         1.2
##  [97,]          5.7         2.9          4.2         1.3
##  [98,]          6.2         2.9          4.3         1.3
##  [99,]          5.1         2.5          3.0         1.1
## [100,]          5.7         2.8          4.1         1.3
## [101,]          6.3         3.3          6.0         2.5
## [102,]          5.8         2.7          5.1         1.9
## [103,]          7.1         3.0          5.9         2.1
## [104,]          6.3         2.9          5.6         1.8
## [105,]          6.5         3.0          5.8         2.2
## [106,]          7.6         3.0          6.6         2.1
## [107,]          4.9         2.5          4.5         1.7
## [108,]          7.3         2.9          6.3         1.8
## [109,]          6.7         2.5          5.8         1.8
## [110,]          7.2         3.6          6.1         2.5
## [111,]          6.5         3.2          5.1         2.0
## [112,]          6.4         2.7          5.3         1.9
## [113,]          6.8         3.0          5.5         2.1
## [114,]          5.7         2.5          5.0         2.0
## [115,]          5.8         2.8          5.1         2.4
## [116,]          6.4         3.2          5.3         2.3
## [117,]          6.5         3.0          5.5         1.8
## [118,]          7.7         3.8          6.7         2.2
## [119,]          7.7         2.6          6.9         2.3
## [120,]          6.0         2.2          5.0         1.5
## [121,]          6.9         3.2          5.7         2.3
## [122,]          5.6         2.8          4.9         2.0
## [123,]          7.7         2.8          6.7         2.0
## [124,]          6.3         2.7          4.9         1.8
## [125,]          6.7         3.3          5.7         2.1
## [126,]          7.2         3.2          6.0         1.8
## [127,]          6.2         2.8          4.8         1.8
## [128,]          6.1         3.0          4.9         1.8
## [129,]          6.4         2.8          5.6         2.1
## [130,]          7.2         3.0          5.8         1.6
## [131,]          7.4         2.8          6.1         1.9
## [132,]          7.9         3.8          6.4         2.0
## [133,]          6.4         2.8          5.6         2.2
## [134,]          6.3         2.8          5.1         1.5
## [135,]          6.1         2.6          5.6         1.4
## [136,]          7.7         3.0          6.1         2.3
## [137,]          6.3         3.4          5.6         2.4
## [138,]          6.4         3.1          5.5         1.8
## [139,]          6.0         3.0          4.8         1.8
## [140,]          6.9         3.1          5.4         2.1
## [141,]          6.7         3.1          5.6         2.4
## [142,]          6.9         3.1          5.1         2.3
## [143,]          5.8         2.7          5.1         1.9
## [144,]          6.8         3.2          5.9         2.3
## [145,]          6.7         3.3          5.7         2.5
## [146,]          6.7         3.0          5.2         2.3
## [147,]          6.3         2.5          5.0         1.9
## [148,]          6.5         3.0          5.2         2.0
## [149,]          6.2         3.4          5.4         2.3
## [150,]          5.9         3.0          5.1         1.8
mu <- colMeans(X)
mu
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
##     5.843333     3.057333     3.758000     1.199333
sigma <- cov(X)
sigma
##              Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length    0.6856935  -0.0424340    1.2743154   0.5162707
## Sepal.Width    -0.0424340   0.1899794   -0.3296564  -0.1216394
## Petal.Length    1.2743154  -0.3296564    3.1162779   1.2956094
## Petal.Width     0.5162707  -0.1216394    1.2956094   0.5810063
d <- NULL
for (i in 1:4){
 d <- c(d, t(X[i,]-mu) %*%solve(sigma) %*%(X[i,]-mu))
}
d
## [1] 2.134468 2.849119 2.081339 2.452382
p <- ((1:4)-0.5)/4
p
## [1] 0.125 0.375 0.625 0.875
chsq <- qchisq(p,df=4, lower.tail=TRUE)

plot(sort(d),chsq)
abline(a=0, b=1, lwd=2)

#Outlier Detection
cut_point <- qchisq(0.05,df=4,lower.tail=FALSE)
d[(d>cut_point)]
## numeric(0)

The first 4 appear to roughly follow a multivariate normal distribution, although the plot is a bit misleading as it is zoomed too far in. There are no outliers as seen by the numeric(0).

#Centering 
XX <- sweep(X, 2, mu, FUN="-")
SVD <- svd(XX)
SVD$d
## [1] 25.099960  6.013147  3.413681  1.884524
X2 <- XX%*%SVD$v
zapsmall(cov(X2))
##          [,1]     [,2]    [,3]     [,4]
## [1,] 4.228242 0.000000 0.00000 0.000000
## [2,] 0.000000 0.242671 0.00000 0.000000
## [3,] 0.000000 0.000000 0.07821 0.000000
## [4,] 0.000000 0.000000 0.00000 0.023835

We can observe that because there is only numbers on the diagonal, that there are no covariances and therefore the linear combinations are independent.

E <- eigen(sigma)
diag(E$values)
##          [,1]      [,2]      [,3]       [,4]
## [1,] 4.228242 0.0000000 0.0000000 0.00000000
## [2,] 0.000000 0.2426707 0.0000000 0.00000000
## [3,] 0.000000 0.0000000 0.0782095 0.00000000
## [4,] 0.000000 0.0000000 0.0000000 0.02383509

The eigenvalues of the covariance matrix of X are therefore equal to linear combinations variances.