knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = TRUE)
library(caret)
## Warning: пакет 'caret' был собран под R версии 4.5.2
## Загрузка требуемого пакета: ggplot2
## Загрузка требуемого пакета: lattice
library(FSelectorRcpp)
## Warning: пакет 'FSelectorRcpp' был собран под R версии 4.5.2
library(arules)
## Warning: пакет 'arules' был собран под R версии 4.5.2
## Загрузка требуемого пакета: Matrix
## 
## Присоединяю пакет: 'arules'
## Следующий объект скрыт от 'package:FSelectorRcpp':
## 
##     discretize
## Следующие объекты скрыты от 'package:base':
## 
##     abbreviate, write
library(Boruta)
## Warning: пакет 'Boruta' был собран под R версии 4.5.2
library(mlbench)
## Warning: пакет 'mlbench' был собран под R версии 4.5.2
names(getModelInfo())
##   [1] "ada"                 "AdaBag"              "AdaBoost.M1"        
##   [4] "adaboost"            "amdai"               "ANFIS"              
##   [7] "avNNet"              "awnb"                "awtan"              
##  [10] "bag"                 "bagEarth"            "bagEarthGCV"        
##  [13] "bagFDA"              "bagFDAGCV"           "bam"                
##  [16] "bartMachine"         "bayesglm"            "binda"              
##  [19] "blackboost"          "blasso"              "blassoAveraged"     
##  [22] "bridge"              "brnn"                "BstLm"              
##  [25] "bstSm"               "bstTree"             "C5.0"               
##  [28] "C5.0Cost"            "C5.0Rules"           "C5.0Tree"           
##  [31] "cforest"             "chaid"               "CSimca"             
##  [34] "ctree"               "ctree2"              "cubist"             
##  [37] "dda"                 "deepboost"           "DENFIS"             
##  [40] "dnn"                 "dwdLinear"           "dwdPoly"            
##  [43] "dwdRadial"           "earth"               "elm"                
##  [46] "enet"                "evtree"              "extraTrees"         
##  [49] "fda"                 "FH.GBML"             "FIR.DM"             
##  [52] "foba"                "FRBCS.CHI"           "FRBCS.W"            
##  [55] "FS.HGD"              "gam"                 "gamboost"           
##  [58] "gamLoess"            "gamSpline"           "gaussprLinear"      
##  [61] "gaussprPoly"         "gaussprRadial"       "gbm_h2o"            
##  [64] "gbm"                 "gcvEarth"            "GFS.FR.MOGUL"       
##  [67] "GFS.LT.RS"           "GFS.THRIFT"          "glm.nb"             
##  [70] "glm"                 "glmboost"            "glmnet_h2o"         
##  [73] "glmnet"              "glmStepAIC"          "gpls"               
##  [76] "hda"                 "hdda"                "hdrda"              
##  [79] "HYFIS"               "icr"                 "J48"                
##  [82] "JRip"                "kernelpls"           "kknn"               
##  [85] "knn"                 "krlsPoly"            "krlsRadial"         
##  [88] "lars"                "lars2"               "lasso"              
##  [91] "lda"                 "lda2"                "leapBackward"       
##  [94] "leapForward"         "leapSeq"             "Linda"              
##  [97] "lm"                  "lmStepAIC"           "LMT"                
## [100] "loclda"              "logicBag"            "LogitBoost"         
## [103] "logreg"              "lssvmLinear"         "lssvmPoly"          
## [106] "lssvmRadial"         "lvq"                 "M5"                 
## [109] "M5Rules"             "manb"                "mda"                
## [112] "Mlda"                "mlp"                 "mlpKerasDecay"      
## [115] "mlpKerasDecayCost"   "mlpKerasDropout"     "mlpKerasDropoutCost"
## [118] "mlpML"               "mlpSGD"              "mlpWeightDecay"     
## [121] "mlpWeightDecayML"    "monmlp"              "msaenet"            
## [124] "multinom"            "mxnet"               "mxnetAdam"          
## [127] "naive_bayes"         "nb"                  "nbDiscrete"         
## [130] "nbSearch"            "neuralnet"           "nnet"               
## [133] "nnls"                "nodeHarvest"         "null"               
## [136] "OneR"                "ordinalNet"          "ordinalRF"          
## [139] "ORFlog"              "ORFpls"              "ORFridge"           
## [142] "ORFsvm"              "ownn"                "pam"                
## [145] "parRF"               "PART"                "partDSA"            
## [148] "pcaNNet"             "pcr"                 "pda"                
## [151] "pda2"                "penalized"           "PenalizedLDA"       
## [154] "plr"                 "pls"                 "plsRglm"            
## [157] "polr"                "ppr"                 "pre"                
## [160] "PRIM"                "protoclass"          "qda"                
## [163] "QdaCov"              "qrf"                 "qrnn"               
## [166] "randomGLM"           "ranger"              "rbf"                
## [169] "rbfDDA"              "Rborist"             "rda"                
## [172] "regLogistic"         "relaxo"              "rf"                 
## [175] "rFerns"              "RFlda"               "rfRules"            
## [178] "ridge"               "rlda"                "rlm"                
## [181] "rmda"                "rocc"                "rotationForest"     
## [184] "rotationForestCp"    "rpart"               "rpart1SE"           
## [187] "rpart2"              "rpartCost"           "rpartScore"         
## [190] "rqlasso"             "rqnc"                "RRF"                
## [193] "RRFglobal"           "rrlda"               "RSimca"             
## [196] "rvmLinear"           "rvmPoly"             "rvmRadial"          
## [199] "SBC"                 "sda"                 "sdwd"               
## [202] "simpls"              "SLAVE"               "slda"               
## [205] "smda"                "snn"                 "sparseLDA"          
## [208] "spikeslab"           "spls"                "stepLDA"            
## [211] "stepQDA"             "superpc"             "svmBoundrangeString"
## [214] "svmExpoString"       "svmLinear"           "svmLinear2"         
## [217] "svmLinear3"          "svmLinearWeights"    "svmLinearWeights2"  
## [220] "svmPoly"             "svmRadial"           "svmRadialCost"      
## [223] "svmRadialSigma"      "svmRadialWeights"    "svmSpectrumString"  
## [226] "tan"                 "tanSearch"           "treebag"            
## [229] "vbmpRadial"          "vglmAdjCat"          "vglmContRatio"      
## [232] "vglmCumulative"      "widekernelpls"       "WM"                 
## [235] "wsrf"                "xgbDART"             "xgbLinear"          
## [238] "xgbTree"             "xyf"
set.seed(123)
x <- matrix(rnorm(50 * 5), ncol = 5)
y <- factor(rep(c("A", "B"), 25))

jpeg("feature_pairs.jpg")
featurePlot(x = x, y = y, plot = "pairs")
dev.off()
## png 
##   2
jpeg("feature_box.jpg")
featurePlot(x = x, y = y, plot = "box")
dev.off()
## png 
##   2
jpeg("featurePlot_density.jpg", width = 800, height = 600)
featurePlot(x = x, y = y, plot = "density")
dev.off()
## png 
##   2
data(iris)

weights <- information_gain(Species ~ ., iris)
weights
##     attributes importance
## 1 Sepal.Length  0.4521286
## 2  Sepal.Width  0.2672750
## 3 Petal.Length  0.9402853
## 4  Petal.Width  0.9554360
iris_interval <- discretize(iris$Sepal.Length, method = "interval")
iris_frequency <- discretize(iris$Sepal.Length, method = "frequency")
iris_cluster <- discretize(iris$Sepal.Length, method = "cluster")


iris_fixed <- discretize(
  iris$Sepal.Length,
  method = "fixed",
  breaks = c(0, 2, 4, 7)
)

summary(iris_interval)
## [4.3,5.5) [5.5,6.7) [6.7,7.9] 
##        52        70        28
summary(iris_frequency)
## [4.3,5.4) [5.4,6.3) [6.3,7.9] 
##        46        53        51
summary(iris_cluster)
##  [4.3,5.42) [5.42,6.39)  [6.39,7.9] 
##          52          56          42
summary(iris_fixed)
## [0,2) [2,4) [4,7]  NA's 
##     0     0   138    12
data(Ozone)

Ozone_clean <- na.omit(Ozone)

boruta_model <- Boruta(V4 ~ ., data = Ozone_clean, doTrace = 0)

print(boruta_model)
## Boruta performed 33 iterations in 1.494151 secs.
##  9 attributes confirmed important: V1, V10, V11, V12, V13 and 4 more;
##  3 attributes confirmed unimportant: V2, V3, V6;
plot(boruta_model, las = 2, cex.axis = 0.7)

boruta_results <- attStats(boruta_model)
boruta_results
##       meanImp medianImp     minImp     maxImp  normHits  decision
## V1   9.329245  9.284575  7.8059871 10.9224608 1.0000000 Confirmed
## V2   1.306499  1.308398 -0.5508258  3.1967642 0.1515152  Rejected
## V3  -1.196355 -1.037432 -3.5382041  0.6560767 0.0000000  Rejected
## V5   9.188471  9.196656  7.7807720 10.7713888 1.0000000 Confirmed
## V6   1.242236  1.050930 -1.0513264  3.3759073 0.2121212  Rejected
## V7  11.575730 11.721367 10.0402729 13.6221998 1.0000000 Confirmed
## V8  17.084855 17.143278 15.1418722 18.7996508 1.0000000 Confirmed
## V9  19.570309 19.509317 17.3230613 20.8999602 1.0000000 Confirmed
## V10  9.977722  9.792059  8.9544025 12.2093774 1.0000000 Confirmed
## V11 11.925061 12.035495  9.4711368 13.1652560 1.0000000 Confirmed
## V12 14.672414 14.581768 13.7639763 16.2010240 1.0000000 Confirmed
## V13  9.535653  9.383268  8.4448471 10.6412577 1.0000000 Confirmed