# -----------------------------
# FASE 1. Generar dataset simulado (abundancias por parcela)
# -----------------------------

etapas <- c("Pionera", "Intermedia", "Tardia", "Madura")  # Define 4 etapas sucesionales (categorías)

parcelas <- expand.grid(Etapa = etapas, Parcela = 1:3) %>%   # Crea combinaciones: 4 etapas x 3 parcelas
  as_tibble() %>%                              # Convierte a tibble
  mutate(ID = paste0(Etapa, "_P", Parcela))   # Crea un ID único por parcela (ej. Pionera_P1)

especies <- paste0("Sp", sprintf("%02d", 1:15))   # Crea nombres Sp01...Sp15 (15 especies)

dirichlet_probs <- function(alpha){       # Define función para generar probabilidades tipo Dirichlet
  w <- rgamma(length(alpha), shape = alpha, rate = 1) # Genera pesos positivos con distribución gamma
  w / sum(w)                            # Normaliza para que sumen 1 (probabilidades)
}                                                        # Fin de función

alpha_por_etapa <- list(                                                       # Lista con "alpha" por etapa (controla dominancia)
  Pionera     = c(6,6,5, 2,2, 1,1,1,1,1, 0.5,0.5,0.5,0.5,0.5),                  # Pionera: pocas especies dominan mucho
  Intermedia  = c(3,3,3, 3,3, 2,2,2,1.5,1.5, 1,1,1,1,1),                        # Intermedia: dominancia más equilibrada
  Tardia      = c(1.5,1.5,1.5, 2,2, 2.5,2.5,2.5,2,2, 2,1.8,1.8,1.6,1.6),        # Tardía: muchas especies con peso medio
  Madura      = c(1.2,1.2,1.2, 1.5,1.5, 1.8,1.8,1.8,1.8,1.8, 2,2,2,2,2)          # Madura: más equidad, varias especies importantes
)

simular_parcela <- function(etapa, total_ind = sample(90:150, 1)){             # Función que simula una parcela (conteos por especie)
  alpha <- alpha_por_etapa[[etapa]]                                            # Selecciona el alpha que corresponde a la etapa
  p <- dirichlet_probs(alpha)                                                  # Genera probabilidades para las 15 especies (suman 1)
  as.integer(rmultinom(1, size = total_ind, prob = p))                         # Genera conteos multinomiales (enteros) según p
}                                                                              # Fin de función

abund <- parcelas %>%                                                          # Toma la tabla parcelas (Etapa, Parcela, ID)
  rowwise() %>%                                                                # Indica que operaciones se harán fila por fila
  mutate(conteos = list(simular_parcela(Etapa))) %>%                           # Para cada fila, simula conteos de 15 especies
  unnest_wider(conteos, names_sep = "_") %>%                                   # Expande la lista a 15 columnas (conteos_1...conteos_15)
  rename_with(~ especies, starts_with("conteos_")) %>%                         # Renombra esas columnas a Sp01...Sp15
  ungroup()                                                                    # Quita el modo fila-por-fila

mat <- abund %>% select(all_of(especies)) %>% as.matrix()                       # Extrae solo especies y las convierte a matriz
rownames(mat) <- abund$ID                                                      # Pone como nombres de fila los ID de parcelas
mat
##               Sp01 Sp02 Sp03 Sp04 Sp05 Sp06 Sp07 Sp08 Sp09 Sp10 Sp11 Sp12 Sp13
## Pionera_P1       7   20   20    6   20    1    6    6    0    8    2    4    0
## Intermedia_P1   11   10    9   19   18    3   10   12    4    7    1    2    0
## Tardia_P1        0    7    4   27   13    6    2   10    2    3    6   13   19
## Madura_P1        5    2    0    5    9    5   14    5    8    8    3    6    6
## Pionera_P2      59   41   16    3    0    3    1    2    2    0    0    0    2
## Intermedia_P2    1   12   22    6    5    3   27   11    6   12    0    0   10
## Tardia_P2        6    7    3    0   25   16   15   13   14    1    1    2    0
## Madura_P2        3    5    0    4    9   15    4    3    9   24    4    3    1
## Pionera_P3      38   21   42    0   11    0    1    2    3    4    0    2    0
## Intermedia_P3    9   14    9   16   16   15   15    5    3   13    4    9    6
## Tardia_P3        3    7    1   11    5   19    9   23    1    7    4    2    5
## Madura_P3        1    3   24    6    9    5   14    4   10   11   25    6   19
##               Sp14 Sp15
## Pionera_P1       2    0
## Intermedia_P1    1    1
## Tardia_P1       14    2
## Madura_P1        5   16
## Pionera_P2       0    2
## Intermedia_P2    3    1
## Tardia_P2        8   12
## Madura_P2       13    8
## Pionera_P3       2   22
## Intermedia_P3    1    1
## Tardia_P3        4    2
## Madura_P3        3    5
# -----------------------------
# FASE 2. Tema 2: Diversidad alfa (por parcela)
# -----------------------------

riqueza  <- vegan::specnumber(mat)                                             # Calcula riqueza S (número de especies con abundancia > 0)
shannon  <- vegan::diversity(mat, index = "shannon")                           # Calcula índice de Shannon H'
simpson  <- vegan::diversity(mat, index = "simpson")                           # Calcula índice de Simpson (diversidad)
pielou   <- shannon / log(pmax(riqueza, 1))                                    # Calcula equitatividad de Pielou (H'/ln(S))

res_alfa <- abund %>%                                                          # Parte del dataset con abundancias
  select(ID, Etapa, Parcela) %>%                                               # Se queda con variables de identificación
  mutate(Riqueza = riqueza,                                                    # Agrega riqueza por parcela
         Shannon = shannon,                                                    # Agrega Shannon por parcela
         Simpson = simpson,                                                    # Agrega Simpson por parcela
         Pielou  = pielou)                                                     # Agrega Pielou por parcela

print(res_alfa)                                                                # Imprime tabla de diversidad alfa por parcela
## # A tibble: 12 × 7
##    ID            Etapa      Parcela Riqueza Shannon Simpson Pielou
##    <chr>         <fct>        <int>   <int>   <dbl>   <dbl>  <dbl>
##  1 Pionera_P1    Pionera          1      12    2.17   0.861  0.873
##  2 Intermedia_P1 Intermedia       1      14    2.33   0.888  0.884
##  3 Tardia_P1     Tardia           1      14    2.35   0.885  0.892
##  4 Madura_P1     Madura           1      14    2.50   0.907  0.949
##  5 Pionera_P2    Pionera          2      10    1.45   0.682  0.628
##  6 Intermedia_P2 Intermedia       2      13    2.24   0.870  0.873
##  7 Tardia_P2     Tardia           2      13    2.28   0.882  0.890
##  8 Madura_P2     Madura           2      14    2.36   0.882  0.894
##  9 Pionera_P3    Pionera          3      11    1.85   0.804  0.769
## 10 Intermedia_P3 Intermedia       3      15    2.51   0.910  0.926
## 11 Tardia_P3     Tardia           3      15    2.36   0.878  0.870
## 12 Madura_P3     Madura           3      15    2.44   0.895  0.899
res_etapa <- res_alfa %>%                                                      # Usa resultados por parcela
  group_by(Etapa) %>%                                                          # Agrupa por etapa sucesional
  summarise(                                                                   # Resume con promedios y desviaciones estándar
    Riqueza_prom = mean(Riqueza), Riqueza_sd = sd(Riqueza),                    # Media y sd de riqueza
    Shannon_prom = mean(Shannon), Shannon_sd = sd(Shannon),                    # Media y sd de Shannon
    Simpson_prom = mean(Simpson), Simpson_sd = sd(Simpson),                    # Media y sd de Simpson
    Pielou_prom  = mean(Pielou),  Pielou_sd  = sd(Pielou),                     # Media y sd de Pielou
    .groups = "drop"                                                           # Quita agrupamiento para devolver tibble normal
  )

print(res_etapa)                                                               # Imprime tabla resumen por etapa
## # A tibble: 4 × 9
##   Etapa  Riqueza_prom Riqueza_sd Shannon_prom Shannon_sd Simpson_prom Simpson_sd
##   <fct>         <dbl>      <dbl>        <dbl>      <dbl>        <dbl>      <dbl>
## 1 Pione…         11        1             1.82     0.362         0.782    0.0913 
## 2 Inter…         14        1             2.36     0.136         0.889    0.0202 
## 3 Tardia         14        1             2.33     0.0424        0.882    0.00343
## 4 Madura         14.3      0.577         2.43     0.0731        0.895    0.0125 
## # ℹ 2 more variables: Pielou_prom <dbl>, Pielou_sd <dbl>
ggplot(res_alfa, aes(x = Etapa, y = Shannon)) +                                # Inicia gráfico: etapa vs Shannon
  geom_boxplot() +                                                             # Dibuja caja y bigotes (distribución)
  geom_jitter(width = 0.12) +                                                  # Pone puntos con leve dispersión horizontal
  theme_minimal() +                                                            # Estilo simple del gráfico
  labs(title = "Diversidad (Shannon) por etapa de sucesión")                   # Título del gráfico