šŸ“Š Modelo inicial

## Fila 1

Tabla

Llamadas Ventas \(x-\bar{x}\) \(y-\bar{y}\) \((x-\bar{x})^2\) \((y-\bar{y})^2\) \((x-\bar{x})(y-\bar{y})\)
20 30 -2 -15 4 225 30
40 60 18 15 324 225 270
20 40 -2 -5 4 25 10
30 60 8 15 64 225 120
10 30 -12 -15 144 225 180
10 40 -12 -5 144 25 60
20 40 -2 -5 4 25 10
20 50 -2 5 4 25 -10
20 30 -2 -15 4 225 30
30 70 8 25 64 625 200

Dispersión

## Fila 2

Cantidades fundamentales

\(\bar{x}=\frac{1}{n}\sum_{i=1}^nx_i=\) 22

\(\bar{y}=\frac{1}{n}\sum_{i=1}^ny_i=\) 45

\[ SXX=\sum_{i=1}^n(x_i-\bar{x})^2= 760 \]

\[ SYY=\sum_{i=1}^n(y_i-\bar{y})^2= 1850 \]

\[ SXY=\sum_{i=1}^n(x_i-\bar{x})(x_i-\bar{y})= 900 \]

Pendiente \(\widehat{\beta}_1=\frac{SXY}{SXX}=\) 900 \(/\) 760 \(=\) 1.1842105

Intercepto \(\widehat{\beta}_0=\bar{y}-\widehat{\beta}_1\bar{x}=\) 18.9473684

Ecuación de la recta \(\hat{y}_i=\widehat{\beta}_0+\widehat{\beta}_1x_i=18.947+1.18x_i\)

Correlación entre las llamadas y las ventas \(r_{xy}=\frac{SXY}{\sqrt{SXX}\sqrt{SYY}}=\) 0.7590141

\(RSS=SYY-\frac{(SXY)^2}{SXX}=\) 784.2105263

\(SS_{REG}= SYY-RSS=\) 1065.7894737

ANOVA

\[ \begin{array}{|c|c|c|c|c|c|} \hline Origen & gl & SS & MS & F & p \\ \hline Regresión & 1 & SS_{REG} & \frac{SS_{REG}}{1} & \frac{MS_{REG}}{\widehat{\sigma}^2} & \\ \hline Residual & n-2 & RSS & \frac{RSS}{n-2}=\widehat{\sigma}^2 & & \\ \hline Total & n-1 & SYY & & & \\ \hline \end{array} \]
Origen gl SS MS F Valor.p
Regresión 1 1065.7895 1065.78947368421 10.8724832214765 0.0109019296658381
Residual 8 784.2105 98.0263157894737
Total 9 1850.0000

\[H_0=E(Y|X=x)=\beta_0\] \[H_a=E(Y|X=x)=\beta_0+\beta_1x\]

\(F_{crĆ­tico}=F_{(1-\alpha,1,n-2)}=F_{(0.95,1,8)}=\) 5.3176551

Se rechaza H0: la pendiente es estadĆ­sticamente significativa.

šŸ“ GeometrĆ­a de la Suma de Cuadrados

## Fila 1

SYY geomƩtrico

SYY como Ɣreas

## Fila 2

RSS geomƩtrico

RSS como Ɣreas

Inferencia del Modelo

Fila 1

GrƔfica del modelo

Resultado en R

Call:
lm(formula = y ~ x)

Residuals:
    Min      1Q  Median      3Q     Max 
-12.632  -5.395  -1.710   6.908  15.526 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)  18.9474     8.4988   2.229   0.0563 .
x             1.1842     0.3591   3.297   0.0109 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.901 on 8 degrees of freedom
Multiple R-squared:  0.5761,    Adjusted R-squared:  0.5231 
F-statistic: 10.87 on 1 and 8 DF,  p-value: 0.0109

Fila 2

Relaciones estadĆ­sticas

Estadísticos teóricos

\[ t_0 = \frac{\hat{\beta}_0}{\sqrt{\operatorname{Var}(\hat{\beta}_0)}} \]

\[ t_1 = \frac{\hat{\beta}_1}{\sqrt{\operatorname{Var}(\hat{\beta}_1)}} \]

\[ R^2 = \frac{SS_{Reg}}{SYY} \]

\[ t_1^2 = F \]

\[ t_{crĆ­tico} = t_{\alpha/2,\,n-2} \]


Sustituyendo valores del ejemplo

\[ t_0 = 2.2294 \]

\[ t_1 = 3.2973 \]

\[ R^2 = \frac{1065.789}{1850} = 0.5761 \]

\[ t_1^2 = 10.8725 \]

\[ F = 10.8725 \]

\[ t_{1,crĆ­tico} = 2.306 \]


Bandas y tabla

Analysis of Variance Table

Response: y
          Df  Sum Sq Mean Sq F value Pr(>F)  
x          1 1065.79 1065.79  10.873 0.0109 *
Residuals  8  784.21   98.03                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Valores observados y ajustados

Fila 1

\(y_i\) y \(\hat{y}_i\)

\(y_i\) \(\hat{y}_i\) LI Ajus LS Ajus LI Pred LS Pred
30 42.632 35.224 50.039 18.629 66.635
60 66.316 49.752 82.879 38.109 94.523
40 42.632 35.224 50.039 18.629 66.635
60 54.474 44.675 64.273 29.628 79.319
30 30.789 18.506 43.073 4.863 56.716
40 30.789 18.506 43.073 4.863 56.716
40 42.632 35.224 50.039 18.629 66.635
50 42.632 35.224 50.039 18.629 66.635
30 42.632 35.224 50.039 18.629 66.635
70 54.474 44.675 64.273 29.628 79.319

Fila 2

Intervalos de Confianza y Predicción

Intervalo de confianza

\[ \widehat{y} \pm t_{\alpha/2,\,n-2} \sqrt{ \widehat{\sigma}^2 \left( \frac{1}{n} + \frac{(x-\bar{x})^2}{SXX} \right) } \]

donde

\[ SXX = \sum_{i=1}^n (x_i-\bar{x})^2 \]


Intervalo de predicción para una nueva observación

\[ \widetilde{y}_{*} \pm 2\times F_{(1-\frac{\alpha}{2},\,2,\,n-2)} \sqrt{ \widehat{\sigma}^2 \left( 1 + \frac{1}{n} + \frac{(x_{*}-\bar{x})^2}{SXX} \right) } \]


Bandas y tabla