Ejercicio R de pcR Los chunks losmobtengo con : Ctrl+Alt+I / Comd+Opt+I paqueterÃa
install.packages("pacman")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.5'
## (as 'lib' is unspecified)
#pacman llama a otros paquetes, y si no estan, los instala
library(pacman)
p_load("vroom", # llamar base de datos
"dplyr", # facilita el manejo de datos
"ggplot2") #graficar
Llamar base de datos
Datos_PCR <-
vroom(file="https://raw.githubusercontent.com/ManuelLaraMVZ/resultados_PCR_practica/refs/heads/main/Genes.csv")
## Rows: 7 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Gen
## dbl (6): C1, C2, C3, T1, T2, T3
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Datos_PCR
## # A tibble: 7 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B-actina 19 19.5 18.9 18.5 18.8 18.2
## 2 PIF1 22.4 22 21 28 28.2 27.9
## 3 PLK1 22 21.8 21.6 21.7 21 21.5
## 4 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3
## 5 PCNA 20 20.3 20.2 24 24.2 NA
## 6 CCNB2 33 NA 33.1 24 25 26
## 7 BRCA 21 20.5 20.4 19.1 19.2 19.5
Aislar gen de referencia
Gen_ref <- Datos_PCR %>%
filter(Gen=="B-actina")
Gen_ref
## # A tibble: 1 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B-actina 19 19.5 18.9 18.5 18.8 18.2
Gen de interés
Gen_int <- Datos_PCR %>%
filter(Gen!="B-actina") #!=todos excepto
Gen_int
## # A tibble: 6 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PIF1 22.4 22 21 28 28.2 27.9
## 2 PLK1 22 21.8 21.6 21.7 21 21.5
## 3 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3
## 4 PCNA 20 20.3 20.2 24 24.2 NA
## 5 CCNB2 33 NA 33.1 24 25 26
## 6 BRCA 21 20.5 20.4 19.1 19.2 19.5
DCT de datos de interferencia
DCT <- Gen_int %>%
mutate(DCTC1= C1 - Gen_ref$C1,
DCTC2= C2 - Gen_ref$C2,
DCTC3= C3 - Gen_ref$C3,
DCTT1= T1 - Gen_ref$T1,
DCTT2= T2 - Gen_ref$T2,
DCTT3= T3 - Gen_ref$T3) %>%
mutate(DosDCT_C1 = 2^-DCTC1,
DosDCT_C2 = 2^-DCTC2,
DosDCT_C3 = 2^-DCTC3,
DosDCT_T1 = 2^-DCTT1,
DosDCT_T2 = 2^-DCTT2,
DosDCT_T3 = 2^-DCTT3,) %>%
mutate(Prom_Cx = (DosDCT_C1+DosDCT_C2+DosDCT_C3)/3,
Prom_Tx = (DosDCT_T1+DosDCT_T2+DosDCT_T3)/3) %>%
mutate(DosDDCT = Prom_Cx/Prom_Tx)
DCT
## # A tibble: 6 × 22
## Gen C1 C2 C3 T1 T2 T3 DCTC1 DCTC2 DCTC3 DCTT1 DCTT2 DCTT3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PIF1 22.4 22 21 28 28.2 27.9 3.4 2.5 2.08 9.5 9.45 9.7
## 2 PLK1 22 21.8 21.6 21.7 21 21.5 3 2.3 2.68 3.2 2.25 3.3
## 3 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3 11.1 11.7 11.9 6.7 6.45 7.1
## 4 PCNA 20 20.3 20.2 24 24.2 NA 1 0.800 1.28 5.5 5.45 NA
## 5 CCNB2 33 NA 33.1 24 25 26 14 NA 14.2 5.5 6.25 7.8
## 6 BRCA 21 20.5 20.4 19.1 19.2 19.5 2 1 1.48 0.600 0.450 1.3
## # ℹ 9 more variables: DosDCT_C1 <dbl>, DosDCT_C2 <dbl>, DosDCT_C3 <dbl>,
## # DosDCT_T1 <dbl>, DosDCT_T2 <dbl>, DosDCT_T3 <dbl>, Prom_Cx <dbl>,
## # Prom_Tx <dbl>, DosDDCT <dbl>
Datos grafica
Datos_grafica <- DCT %>%
select("Gen","DosDDCT")
Datos_grafica
## # A tibble: 6 × 2
## Gen DosDDCT
## <chr> <dbl>
## 1 PIF1 127.
## 2 PLK1 1.15
## 3 CCNB1 0.0360
## 4 PCNA NA
## 5 CCNB2 NA
## 6 BRCA 0.617
library(ggplot2)
Datos_grafica <- DCT %>%
select("Gen","DosDDCT")
Grafica_PCR <- ggplot(Datos_grafica,
aes(x = Gen,
y = DosDDCT,
fill = Gen)) + # cada barra con color distinto
geom_col() +
labs(
title = "Expresión génica relativa",
subtitle = "Resultados del análisis PCR en tiempo real",
caption = "Fuente: Datos experimentales DCT"
) +
theme_minimal(base_size = 14) + # estilo limpio
theme(
plot.background = element_rect(fill = "white"), # fondo blanco
panel.background = element_rect(fill = "white"),
legend.position = "none" # ocultar leyenda si no es necesaria
)
Grafica_PCR
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_col()`).