Import Data

rent <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2022/2022-07-05/rent.csv')

skimr::skim(rent)
Data summary
Name rent
Number of rows 200796
Number of columns 17
_______________________
Column type frequency:
character 8
numeric 9
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
post_id 0 1.00 9 14 0 200796 0
nhood 0 1.00 4 43 0 167 0
city 0 1.00 5 19 0 104 0
county 1394 0.99 4 13 0 10 0
address 196888 0.02 1 38 0 2869 0
title 2517 0.99 2 298 0 184961 0
descr 197542 0.02 13 16975 0 3025 0
details 192780 0.04 4 595 0 7667 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
date 0 1.00 20095718.38 44694.07 20000902.00 20050227.00 20110924.00 20120805.0 20180717.00 ▁▇▁▆▃
year 0 1.00 2009.51 4.48 2000.00 2005.00 2011.00 2012.0 2018.00 ▁▇▁▆▃
price 0 1.00 2135.36 1427.75 220.00 1295.00 1800.00 2505.0 40000.00 ▇▁▁▁▁
beds 6608 0.97 1.89 1.08 0.00 1.00 2.00 3.0 12.00 ▇▂▁▁▁
baths 158121 0.21 1.68 0.69 1.00 1.00 2.00 2.0 8.00 ▇▁▁▁▁
sqft 136117 0.32 1201.83 5000.22 80.00 750.00 1000.00 1360.0 900000.00 ▇▁▁▁▁
room_in_apt 0 1.00 0.00 0.04 0.00 0.00 0.00 0.0 1.00 ▇▁▁▁▁
lat 193145 0.04 37.67 0.35 33.57 37.40 37.76 37.8 40.43 ▁▁▅▇▁
lon 196484 0.02 -122.21 0.78 -123.20 -122.42 -122.26 -122.0 -74.20 ▇▁▁▁▁
data <- rent %>%
 
  select(-address, -descr, -details, -lat, -lon, -date, -year, -room_in_apt) %>%
  na.omit() %>%
  
  mutate(price = log(price))

Explore Data

Identify good predictors.

sqft

data %>%
    ggplot(aes(price, sqft)) +
    scale_y_log10() +
    geom_point()

beds

data %>%
    ggplot(aes(price, as.factor(beds))) +
    geom_boxplot()

title

data %>%
  # tokenize title
  unnest_tokens(output = word, input = title) %>%
  
  # calculate avg rent per word
  group_by(word) %>%
  summarise(price = mean(price),
            n = n()) %>%
  ungroup() %>%
    
# Filter for words appearing > 10 times and remove digits
  filter(n > 10, !str_detect(word, "\\d")) %>%
  slice_max(order_by = price, n = 20) %>%
  
  ggplot(aes(price, fct_reorder(word, price))) +
  geom_point() +
  labs(y = "words in title")

EDA shortcut

# Step 1: Prepare data
data_binarized_tbl <- data %>%
    select(-post_id, -title) %>%
    binarize()

data_binarized_tbl %>% glimpse()
## Rows: 14,394
## Columns: 85
## $ nhood__campbell                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__concord_/_pleasant_hill_/_martinez` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__cupertino                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__daly_city                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__danville_/_san_ramon`               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__dublin_/_pleasanton`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__fairfield_/_vacaville`              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__foster_city                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__hayward_/_castro_valley`            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__milpitas                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__mountain_view                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__napa_county                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__palo_alto                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__petaluma                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__pittsburg_/_antioch`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__rohnert_pk_/_cotati`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_francisco                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_central                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_east                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_north                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_south                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_west                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_mateo                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_rafael                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_clara                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_cruz                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_rosa                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__SOMA_/_south_beach`                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__sunnyvale                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__union_city                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__vallejo_/_benicia`                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__willow_glen_/_cambrian`             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__-OTHER`                             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ city__cambrian                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__campbell                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__concord                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__cupertino                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__daly_city                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__dublin                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__fairfield                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__foster_city                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__hayward                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__milpitas                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__mountain_view                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__napa_county                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__oakland                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__palo_alto                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__petaluma                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__pittsburg                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__rohnert_park                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_francisco                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_jose                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_mateo                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_rafael                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_ramon                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_clara                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_cruz                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_rosa                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__sunnyvale                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__union_city                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__vallejo                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `city__-OTHER`                              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ county__alameda                             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ county__contra_costa                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__marin                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__napa                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__san_francisco                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__san_mateo                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__santa_clara                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__santa_cruz                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__solano                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__sonoma                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `price__-Inf_7.52294091807237`              <dbl> 0, 1, 0, 1, 0, 1, 1, 0, 0,…
## $ price__7.52294091807237_7.80384330353877    <dbl> 0, 0, 1, 0, 0, 0, 0, 1, 1,…
## $ price__7.80384330353877_8.07868822922987    <dbl> 1, 0, 0, 0, 1, 0, 0, 0, 0,…
## $ price__8.07868822922987_Inf                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `beds__-Inf_2`                              <dbl> 0, 1, 0, 1, 1, 1, 0, 0, 1,…
## $ beds__2_3                                   <dbl> 0, 0, 1, 0, 0, 0, 1, 1, 0,…
## $ beds__3_Inf                                 <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `baths__-Inf_2`                             <dbl> 0, 1, 1, 1, 1, 1, 0, 0, 1,…
## $ baths__2_Inf                                <dbl> 1, 0, 0, 0, 0, 0, 1, 1, 0,…
## $ `sqft__-Inf_887`                            <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1,…
## $ sqft__887_1100                              <dbl> 0, 0, 0, 1, 0, 0, 0, 1, 0,…
## $ sqft__1100_1500                             <dbl> 0, 0, 1, 0, 1, 1, 0, 0, 0,…
## $ sqft__1500_Inf                              <dbl> 1, 0, 0, 0, 0, 0, 1, 0, 0,…
#Step 2: Correlate

data_corr_tbl <- data_binarized_tbl %>%
    correlate(price__8.07868822922987_Inf)

data_corr_tbl
## # A tibble: 85 × 3
##    feature bin                               correlation
##    <fct>   <chr>                                   <dbl>
##  1 price   8.07868822922987_Inf                    1    
##  2 city    san_francisco                           0.389
##  3 county  san_francisco                           0.389
##  4 price   -Inf_7.52294091807237                  -0.342
##  5 price   7.80384330353877_8.07868822922987      -0.330
##  6 price   7.52294091807237_7.80384330353877      -0.328
##  7 sqft    1500_Inf                                0.324
##  8 beds    -Inf_2                                 -0.254
##  9 beds    3_Inf                                   0.241
## 10 sqft    -Inf_887                               -0.240
## # ℹ 75 more rows
# Step 3: Plot
data_corr_tbl %>%
    plot_correlation_funnel()
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## ℹ The deprecated feature was likely used in the correlationfunnel package.
##   Please report the issue at
##   <https://github.com/business-science/correlationfunnel/issues>.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## ℹ The deprecated feature was likely used in the correlationfunnel package.
##   Please report the issue at
##   <https://github.com/business-science/correlationfunnel/issues>.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: ggrepel: 69 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Build Data

data <- sample_n(data, 100)
# Split into train and test dataset
set.seed(1234)
data_split <- rsample::initial_split(data)
data_train <- training(data_split)
data_test <- testing(data_split)

# Further split training dataset for cross-validation
set.seed(2345)
data_cv <- rsample::vfold_cv(data_train)
data_cv
## #  10-fold cross-validation 
## # A tibble: 10 × 2
##    splits         id    
##    <list>         <chr> 
##  1 <split [67/8]> Fold01
##  2 <split [67/8]> Fold02
##  3 <split [67/8]> Fold03
##  4 <split [67/8]> Fold04
##  5 <split [67/8]> Fold05
##  6 <split [68/7]> Fold06
##  7 <split [68/7]> Fold07
##  8 <split [68/7]> Fold08
##  9 <split [68/7]> Fold09
## 10 <split [68/7]> Fold10
usemodels::use_xgboost(price ~ ., data = data_train)
## xgboost_recipe <- 
##   recipe(formula = price ~ ., data = data_train) %>% 
##   step_zv(all_predictors()) 
## 
## xgboost_spec <- 
##   boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(), 
##     loss_reduction = tune(), sample_size = tune()) %>% 
##   set_mode("classification") %>% 
##   set_engine("xgboost") 
## 
## xgboost_workflow <- 
##   workflow() %>% 
##   add_recipe(xgboost_recipe) %>% 
##   add_model(xgboost_spec) 
## 
## set.seed(6804)
## xgboost_tune <-
##   tune_grid(xgboost_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
# Specify recipe
xgboost_recipe <- 
  recipe(formula = price ~ ., data = data_train) %>% 
  recipes::update_role(post_id, new_role = "id variable") %>% 
  step_tokenize(title) %>% 
  step_tokenfilter(title, max_tokens = 100) %>% 
  step_tfidf(title) %>% 
  step_other(nhood, city) %>% 
  step_dummy(nhood, city, county, one_hot = TRUE) %>%  
  step_YeoJohnson(sqft, beds, baths)

xgboost_recipe %>% prep() %>% juice() %>% glimpse()
## Rows: 75
## Columns: 121
## $ post_id                   <chr> "5066139021", "4106247760", "4255533893", "5…
## $ beds                      <dbl> 0.0000000, 2.0020246, 2.0020246, 1.4652512, …
## $ baths                     <dbl> 0.5325792, 0.7320034, 0.7320034, 0.7320034, …
## $ sqft                      <dbl> 3.950191, 4.228203, 4.232115, 4.162602, 3.98…
## $ price                     <dbl> 8.242756, 7.989560, 7.333023, 7.882315, 7.73…
## $ tfidf_title_1             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_1.5ba         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_10            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_1200ft        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_15            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_1750          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_1ba           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_1bath         <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.00…
## $ tfidf_title_1bd           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_1br           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_2             <dbl> 0.00000000, 0.22353671, 0.11176835, 0.000000…
## $ tfidf_title_2.5ba         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_2000          <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.00…
## $ tfidf_title_2359          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_2950          <dbl> 0.0000000, 0.2711958, 0.0000000, 0.0000000, …
## $ tfidf_title_2ba           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.9241962, …
## $ tfidf_title_2bd           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_2br           <dbl> 0.00000000, 0.00000000, 0.00000000, 0.434174…
## $ tfidf_title_3             <dbl> 0.0000000, 0.2126726, 0.2126726, 0.0000000, …
## $ tfidf_title_3br           <dbl> 0.0000000, 0.1869502, 0.1869502, 0.0000000, …
## $ tfidf_title_4             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_4br           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_5             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_8             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_9             <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_and           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_apartment     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_available     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_ba            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_bath          <dbl> 0.00000000, 0.11841132, 0.11841132, 0.000000…
## $ tfidf_title_bathroom      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_baths         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_bd            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_beautiful     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_bed           <dbl> 0.00000000, 0.18009104, 0.00000000, 0.000000…
## $ tfidf_title_bedroom       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_br            <dbl> 0.0000000, 0.0000000, 0.2030538, 0.0000000, …
## $ tfidf_title_bright        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_condo         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.9943845, …
## $ tfidf_title_corner        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_downtown      <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.00…
## $ tfidf_title_favorite      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_flat          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_floor         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_floors        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_for           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_garage        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_great         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_gym           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_har           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_hardwood      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_hide          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_home          <dbl> 0.0000000, 0.0000000, 0.2126726, 0.0000000, …
## $ tfidf_title_house         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_in            <dbl> 0.3997140, 0.0000000, 0.1453505, 0.0000000, …
## $ tfidf_title_jose          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_los           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_map           <dbl> 0.0000000, 0.2961906, 0.2961906, 0.0000000, …
## $ tfidf_title_move          <dbl> 0.8145241, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_must          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_near          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_neighborhood  <dbl> 0.0000000, 0.0000000, 0.2961906, 0.0000000, …
## $ tfidf_title_new           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_nice          <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.00…
## $ tfidf_title_one           <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.00…
## $ tfidf_title_pic           <dbl> 0.0000000, 0.2961906, 0.2961906, 0.0000000, …
## $ tfidf_title_post          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_posting       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_quiet         <dbl> 0.0000000, 0.0000000, 0.2961906, 0.0000000, …
## $ tfidf_title_ready         <dbl> 0.7457884, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_remodeled     <dbl> 0.0000000, 0.2961906, 0.0000000, 0.0000000, …
## $ tfidf_title_rent          <dbl> 0.7457884, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_resim         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_restore       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_san           <dbl> 0.0000000, 0.2366082, 0.0000000, 0.0000000, …
## $ tfidf_title_santa         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_see           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_soon          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_spacious      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_this          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_to            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_top           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_two           <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.00…
## $ tfidf_title_view          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_w             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ tfidf_title_welcome       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_with          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_게시물        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_게시물을      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_복구          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_사진          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_설정          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_숨김          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_월            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_이            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_즐겨찾기로    <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_지도          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_图片          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_地图          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ tfidf_title_月            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, …
## $ nhood_dublin...pleasanton <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood_other               <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ city_dublin               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city_san.francisco        <dbl> 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1,…
## $ city_san.jose             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city_other                <dbl> 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0,…
## $ county_alameda            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county_contra.costa       <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county_marin              <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,…
## $ county_napa               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county_san.francisco      <dbl> 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1,…
## $ county_san.mateo          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,…
## $ county_santa.clara        <dbl> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,…
## $ county_santa.cruz         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county_solano             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county_sonoma             <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
# Specify model
xgboost_spec <- 
  boost_tree(trees = tune(), min_n = tune(), mtry = tune(), learn_rate = tune()) %>% 
  set_mode("regression") %>% 
  set_engine("xgboost")

# Combine recipe and model using workflow
xgboost_workflow <- 
  workflow() %>% 
  add_recipe(xgboost_recipe) %>% 
  add_model(xgboost_spec)

# Tune hyperparameters
set.seed(344)
xgboost_tune <- 
  tune_grid(xgboost_workflow, 
            resamples = data_cv, 
            grid = 5)

Evaluate Models

tune::show_best(xgboost_tune, metric = "rmse")
## # A tibble: 5 × 10
##    mtry trees min_n learn_rate .metric .estimator  mean     n std_err .config   
##   <int> <int> <int>      <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>     
## 1   119  2000    21    0.0178  rmse    standard   0.333    10  0.0318 pre0_mod5…
## 2    89   500    30    0.001   rmse    standard   0.352    10  0.0314 pre0_mod4…
## 3     1  1500    11    0.00422 rmse    standard   0.359    10  0.0303 pre0_mod1…
## 4    60     1     2    0.0750  rmse    standard   0.364    10  0.0309 pre0_mod3…
## 5    30  1000    40    0.316   rmse    standard   0.374    10  0.0308 pre0_mod2…
# Update the model by selecting the best hyperparameters.
xgboost_fw <- tune::finalize_workflow(xgboost_workflow,
                                      tune::select_best(xgboost_tune, metric = "rmse"))

# Fit the model on the entire training data and test it on the test data.
data_fit <- tune::last_fit(xgboost_fw, data_split)

tune::collect_metrics(data_fit)
## # A tibble: 2 × 4
##   .metric .estimator .estimate .config        
##   <chr>   <chr>          <dbl> <chr>          
## 1 rmse    standard      0.380  pre0_mod0_post0
## 2 rsq     standard      0.0785 pre0_mod0_post0
tune::collect_predictions(data_fit) %>%
  ggplot(aes(price, .pred)) +
  geom_point(alpha = 0.3, fill = "midnightblue") +
  geom_abline(lty = 2, color = "gray50") +
  coord_fixed()