Ejercicio R de PCR

Los chunks los obtengo con: Cmd + Opt+ I

Paquetería

#install.packages("pacman")
library("pacman")
#pacman llama a otros paquetes y si no estan los instala

p_load("vroom", #llamar bases de datos
       "dplyr", #facilita el manejo de datos
       "ggplot2") #graficar 

Llamar base de datos

Datos_PCR <- #correr datos
  vroom(file = "https://raw.githubusercontent.com/ManuelLaraMVZ/resultados_PCR_practica/refs/heads/main/Genes.csv")
## `curl` package not installed, falling back to using `url()`
## Rows: 7 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Gen
## dbl (6): C1, C2, C3, T1, T2, T3
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Datos_PCR
## # A tibble: 7 × 7
##   Gen         C1    C2    C3    T1    T2    T3
##   <chr>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B-actina  19    19.5  18.9  18.5  18.8  18.2
## 2 PIF1      22.4  22    21    28    28.2  27.9
## 3 PLK1      22    21.8  21.6  21.7  21    21.5
## 4 CCNB1     30.1  31.2  30.8  25.2  25.2  25.3
## 5 PCNA      20    20.3  20.2  24    24.2  NA  
## 6 CCNB2     33    NA    33.1  24    25    26  
## 7 BRCA      21    20.5  20.4  19.1  19.2  19.5

Aislar gen de referencia

Gen_ref <- Datos_PCR %>%  # a la base de datos PCR le haras lo siguiuente
  filter(Gen == "B-actina")#seleccionar filas; == exactamente igual/identico
Gen_ref
## # A tibble: 1 × 7
##   Gen         C1    C2    C3    T1    T2    T3
##   <chr>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B-actina    19  19.5  18.9  18.5  18.8  18.2

Gen de intéres

Gen_int <- Datos_PCR %>% 
  filter(Gen !="B-actina") # !: todos excepto
Gen_int
## # A tibble: 6 × 7
##   Gen      C1    C2    C3    T1    T2    T3
##   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PIF1   22.4  22    21    28    28.2  27.9
## 2 PLK1   22    21.8  21.6  21.7  21    21.5
## 3 CCNB1  30.1  31.2  30.8  25.2  25.2  25.3
## 4 PCNA   20    20.3  20.2  24    24.2  NA  
## 5 CCNB2  33    NA    33.1  24    25    26  
## 6 BRCA   21    20.5  20.4  19.1  19.2  19.5

Analisis

DCT <- Gen_int %>%
  mutate(DCTC1= C1- Gen_ref$C1,
         DCTC2= C2 - Gen_ref$C2,
         DCTC3= C3 - Gen_ref$C3,
         DCTT1= T1 - Gen_ref$T1,
         DCTT2= T2 - Gen_ref$T2,
         DCTT3= T3 - Gen_ref$T3) %>%
  mutate(DosDCT_C1=2^-DCTC1, 
         DosDCT_C2=2^-DCTC2,
         DosDCT_C3=2^-DCTC3, 
         DosDCT_T1=2^-DCTT1,
         DosDCT_T2=2^-DCTT2,
         DosDCT_T3=2^-DCTT3) %>%
mutate(DosDCT_Cx_prom = (DosDCT_C1+DosDCT_C2+DosDCT_C3)/3,
       DosDCT_Tx_prom = (DosDCT_T1+DosDCT_T2+DosDCT_T3)/3)%>%
  mutate (DosDDCT= DosDCT_Tx_prom/DosDCT_Cx_prom)

DCT
## # A tibble: 6 × 22
##   Gen      C1    C2    C3    T1    T2    T3 DCTC1  DCTC2 DCTC3 DCTT1 DCTT2 DCTT3
##   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PIF1   22.4  22    21    28    28.2  27.9   3.4  2.5    2.08 9.5   9.45    9.7
## 2 PLK1   22    21.8  21.6  21.7  21    21.5   3    2.3    2.68 3.2   2.25    3.3
## 3 CCNB1  30.1  31.2  30.8  25.2  25.2  25.3  11.1 11.7   11.9  6.7   6.45    7.1
## 4 PCNA   20    20.3  20.2  24    24.2  NA     1    0.800  1.28 5.5   5.45   NA  
## 5 CCNB2  33    NA    33.1  24    25    26    14   NA     14.2  5.5   6.25    7.8
## 6 BRCA   21    20.5  20.4  19.1  19.2  19.5   2    1      1.48 0.600 0.450   1.3
## # ℹ 9 more variables: DosDCT_C1 <dbl>, DosDCT_C2 <dbl>, DosDCT_C3 <dbl>,
## #   DosDCT_T1 <dbl>, DosDCT_T2 <dbl>, DosDCT_T3 <dbl>, DosDCT_Cx_prom <dbl>,
## #   DosDCT_Tx_prom <dbl>, DosDDCT <dbl>

Seleccion de datos para graficar

Datos_grafica <- DCT %>%
  select("Gen","DosDDCT")
Datos_grafica
## # A tibble: 6 × 2
##   Gen    DosDDCT
##   <chr>    <dbl>
## 1 PIF1   0.00790
## 2 PLK1   0.869  
## 3 CCNB1 27.7    
## 4 PCNA  NA      
## 5 CCNB2 NA      
## 6 BRCA   1.62

Gráfica

Grafica_PCR <- ggplot(Datos_grafica,
                      aes(x = Gen, y = DosDDCT, fill = Gen)) +
  geom_col() +
  labs(
    title = "Expresión génica por PCR",
    subtitle = "Promedio de ΔΔCT por gen",
    caption = "Fuente: Datos experimentales"
  ) +
  theme_minimal(base_size = 14) +   # fondo blanco y estilo limpio
  theme(
    plot.title = element_text(face = "bold", size = 16),
    plot.subtitle = element_text(size = 12),
    plot.caption = element_text(size = 10, hjust = 0)
  ) +
  scale_fill_manual(values = c("#FFC0CB", "#FF1493","#FFB6E9", "#FF69B4", "#DB7093", "#C71585"))


Grafica_PCR
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_col()`).