Se realizará un ejemplo de análisis de datos para que salga lo del chunk tienes que poner cmnd+option+I
install.packages("pacman") #es un paquete que llama a otros paquetes t si no esta no se instala
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.5'
## (as 'lib' is unspecified)
library ("pacman") #esta funciion llama al paquere instalado
p_load("ggplot2" , #para graficar
"dplyr", #para facilitar el manejo de datos
"vroom") #llamar repositorios
Llamar a base de datos
datos_PCR <- vroom (file = "https://raw.githubusercontent.com/ManuelLaraMVZ/resultados_PCR_practica/refs/heads/main/Genes.csv")
## `curl` package not installed, falling back to using `url()`
## Rows: 7 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Gen
## dbl (6): C1, C2, C3, T1, T2, T3
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
datos_PCR
## # A tibble: 7 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B-actina 19 19.5 18.9 18.5 18.8 18.2
## 2 PIF1 22.4 22 21 28 28.2 27.9
## 3 PLK1 22 21.8 21.6 21.7 21 21.5
## 4 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3
## 5 PCNA 20 20.3 20.2 24 24.2 NA
## 6 CCNB2 33 NA 33.1 24 25 26
## 7 BRCA 21 20.5 20.4 19.1 19.2 19.5
aislar los genes de referencia para cada condicion
gen_ref <- datos_PCR %>%
filter(Gen== "B-actina")
gen_ref
## # A tibble: 1 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B-actina 19 19.5 18.9 18.5 18.8 18.2
generar base de datos con genes de interés
gen_int <- datos_PCR %>%
filter(Gen != "B-actina")
gen_int
## # A tibble: 6 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PIF1 22.4 22 21 28 28.2 27.9
## 2 PLK1 22 21.8 21.6 21.7 21 21.5
## 3 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3
## 4 PCNA 20 20.3 20.2 24 24.2 NA
## 5 CCNB2 33 NA 33.1 24 25 26
## 6 BRCA 21 20.5 20.4 19.1 19.2 19.5
análisis
DCT <- gen_int %>%
mutate(DC1 = C1 - gen_ref$C1,
DC2 = C2 - gen_ref$C2,
DC3 = C3 - gen_ref$C3,
DT1 = T1 - gen_ref$T1,
DT2 = T2 - gen_ref$T2,
DT3 = T3 - gen_ref$T3,) %>%
mutate (DosDCTC1 = 2^-DC1,
DosDCTC2 = 2^-DC2,
DosDCTC3 = 2^-DC3,
DosDCTT1 = 2^-DT1,
DosDCTT2 = 2^-DT2,
DosDCTT3 = 2^-DT3,
DosDCTC2 = 2^-DC2,
DosDCTC3 = 2^-DC3,
DosDCTT1 = 2^-DT1,
DosDCTT2 = 2^-DT2,
DosDCTT3 = 2^-DT3) %>%
mutate(DosDCTCx = (DosDCTC1+DosDCTC2+DosDCTC3)/3,
DosDCTTx = (DosDCTT1+DosDCTT2+DosDCTT3)/3) %>%
mutate(DosDDCT = DosDCTTx/DosDCTCx)
DCT
## # A tibble: 6 × 22
## Gen C1 C2 C3 T1 T2 T3 DC1 DC2 DC3 DT1 DT2 DT3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PIF1 22.4 22 21 28 28.2 27.9 3.4 2.5 2.08 9.5 9.45 9.7
## 2 PLK1 22 21.8 21.6 21.7 21 21.5 3 2.3 2.68 3.2 2.25 3.3
## 3 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3 11.1 11.7 11.9 6.7 6.45 7.1
## 4 PCNA 20 20.3 20.2 24 24.2 NA 1 0.800 1.28 5.5 5.45 NA
## 5 CCNB2 33 NA 33.1 24 25 26 14 NA 14.2 5.5 6.25 7.8
## 6 BRCA 21 20.5 20.4 19.1 19.2 19.5 2 1 1.48 0.600 0.450 1.3
## # ℹ 9 more variables: DosDCTC1 <dbl>, DosDCTC2 <dbl>, DosDCTC3 <dbl>,
## # DosDCTT1 <dbl>, DosDCTT2 <dbl>, DosDCTT3 <dbl>, DosDCTCx <dbl>,
## # DosDCTTx <dbl>, DosDDCT <dbl>
aislar datos
datos_grafica <- DCT %>%
select("Gen", "DosDDCT")
datos_grafica
## # A tibble: 6 × 2
## Gen DosDDCT
## <chr> <dbl>
## 1 PIF1 0.00790
## 2 PLK1 0.869
## 3 CCNB1 27.7
## 4 PCNA NA
## 5 CCNB2 NA
## 6 BRCA 1.62
gráfica
Grafica_PCR <- ggplot(datos_grafica,
aes(x=Gen,
y=DosDDCT)) +
geom_col()+theme_classic()
Grafica_PCR
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_col()`).