Se realizará un ejemplo de análisis de datos Chunk : cmd + option + I
Instalación de paquetes
#install.packages("pacman")
library("pacman")
p_load("ggplot2",
"dplyr",
"vroom")
Llamar a base de datos
Datos_PCR <- vroom(file = "https://raw.githubusercontent.com/ManuelLaraMVZ/resultados_PCR_practica/refs/heads/main/Genes.csv")
## Rows: 7 Columns: 7
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Gen
## dbl (6): C1, C2, C3, T1, T2, T3
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
Datos_PCR
## # A tibble: 7 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B-actina 19 19.5 18.9 18.5 18.8 18.2
## 2 PIF1 22.4 22 21 28 28.2 27.9
## 3 PLK1 22 21.8 21.6 21.7 21 21.5
## 4 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3
## 5 PCNA 20 20.3 20.2 24 24.2 NA
## 6 CCNB2 33 NA 33.1 24 25 26
## 7 BRCA 21 20.5 20.4 19.1 19.2 19.5
Aislar los genes de referencia para cada condición
Gen_ref <- Datos_PCR %>%
filter(Gen == "B-actina")
Gen_ref
## # A tibble: 1 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 B-actina 19 19.5 18.9 18.5 18.8 18.2
Generar base de datos con genes de interés
Gen_int <- Datos_PCR %>%
filter (Gen != "B-actina")
Gen_int
## # A tibble: 6 × 7
## Gen C1 C2 C3 T1 T2 T3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PIF1 22.4 22 21 28 28.2 27.9
## 2 PLK1 22 21.8 21.6 21.7 21 21.5
## 3 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3
## 4 PCNA 20 20.3 20.2 24 24.2 NA
## 5 CCNB2 33 NA 33.1 24 25 26
## 6 BRCA 21 20.5 20.4 19.1 19.2 19.5
Realizar análisis
DCT <- Gen_int %>%
# calcular DCT
mutate(DC1 = C1 - Gen_ref$C1,
DC2 = C2 - Gen_ref$C2,
DC3 = C3 - Gen_ref$C3,
DT1 = T1 - Gen_ref$T1,
DT2 = T2 - Gen_ref$T2,
DT3 = T3 - Gen_ref$T3) %>%
# calcular 2^DCT
mutate(DosDCTC1 = 2^-DC1,
DosDCTC2 = 2^-DC2,
DosDCTC3 = 2^-DC3,
DosDCTT1 = 2^-DT1,
DosDCTT2 = 2^-DT2,
DosDCTT3 = 2^-DT3) %>%
# promediar 3 réplicas (tratamiento y control)
mutate(DosDCTCx = (DosDCTC1 + DosDCTC2 + DosDCTC3)/3) %>%
mutate(DosDCTTx = (DosDCTT1 + DosDCTT2 + DosDCTT3)/3) %>%
# calcular 2^DDCT
mutate(DosDDCT = DosDCTTx/DosDCTCx)
DCT
## # A tibble: 6 × 22
## Gen C1 C2 C3 T1 T2 T3 DC1 DC2 DC3 DT1 DT2 DT3
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 PIF1 22.4 22 21 28 28.2 27.9 3.4 2.5 2.08 9.5 9.45 9.7
## 2 PLK1 22 21.8 21.6 21.7 21 21.5 3 2.3 2.68 3.2 2.25 3.3
## 3 CCNB1 30.1 31.2 30.8 25.2 25.2 25.3 11.1 11.7 11.9 6.7 6.45 7.1
## 4 PCNA 20 20.3 20.2 24 24.2 NA 1 0.800 1.28 5.5 5.45 NA
## 5 CCNB2 33 NA 33.1 24 25 26 14 NA 14.2 5.5 6.25 7.8
## 6 BRCA 21 20.5 20.4 19.1 19.2 19.5 2 1 1.48 0.600 0.450 1.3
## # ℹ 9 more variables: DosDCTC1 <dbl>, DosDCTC2 <dbl>, DosDCTC3 <dbl>,
## # DosDCTT1 <dbl>, DosDCTT2 <dbl>, DosDCTT3 <dbl>, DosDCTCx <dbl>,
## # DosDCTTx <dbl>, DosDDCT <dbl>
Gráfica
Datos_grafica <- DCT %>%
select("Gen","DosDDCT")
Datos_grafica
## # A tibble: 6 × 2
## Gen DosDDCT
## <chr> <dbl>
## 1 PIF1 0.00790
## 2 PLK1 0.869
## 3 CCNB1 27.7
## 4 PCNA NA
## 5 CCNB2 NA
## 6 BRCA 1.62
Grafica_PCR <- ggplot(Datos_grafica,
mapping = aes(x = Gen,
y = DosDDCT)) +
geom_col() +
theme_classic()
Grafica_PCR
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_col()`).