library(readxl)
library(ggpubr)
## Loading required package: ggplot2
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(effectsize)
library(effsize)
Dataset6.1 <- read_excel("/Users/asfia/Desktop/Dataset6.1.xlsx")
Dataset6.1 %>%
group_by(Group) %>%
summarise(
Mean = mean(Exam_Score),
Median = median(Exam_Score),
SD = sd(Exam_Score),
N = n()
)
## # A tibble: 2 × 5
## Group Mean Median SD N
## <chr> <dbl> <dbl> <dbl> <int>
## 1 No Tutoring 71.9 71.5 7.68 40
## 2 Tutoring 78.4 78.7 7.18 40
hist(Dataset6.1$Exam_Score[Dataset6.1$Group == "Tutoring"],
main = "Histogram of Exam Scores - Tutoring Group",
xlab = "Exam Score",
ylab = "Frequency",
col = "lightblue",
border = "blue",
breaks = 10)
#### Skewness: symmetrical , Kurtosis: Proper Bell Curve
hist(Dataset6.1$Exam_Score[Dataset6.1$Group == "No Tutoring"],
main = "Histogram of Exam Scores - No Tutoring Group",
xlab = "Exam Score",
ylab = "Frequency",
col = "lightgreen",
border = "darkgreen",
breaks = 10)
#### Skewness: symmetrical , Kurtosis: Proper Bell Curve
ggboxplot(Dataset6.1, x = "Group", y = "Exam_Score",
color = "Group",
palette = c("blue", "green"),
add = "jitter",
title = "Exam Scores by Group",
xlab = "Group",
ylab = "Exam Score")
#### Based on the reports and the box plot we use the independent
T-test”
shapiro.test(Dataset6.1$Exam_Score[Dataset6.1$Group == "Tutoring"])
##
## Shapiro-Wilk normality test
##
## data: Dataset6.1$Exam_Score[Dataset6.1$Group == "Tutoring"]
## W = 0.98859, p-value = 0.953
shapiro.test(Dataset6.1$Exam_Score[Dataset6.1$Group == "No Tutoring"])
##
## Shapiro-Wilk normality test
##
## data: Dataset6.1$Exam_Score[Dataset6.1$Group == "No Tutoring"]
## W = 0.98791, p-value = 0.9398
t.test(Exam_Score ~ Group, data = Dataset6.1, var.equal = TRUE)
##
## Two Sample t-test
##
## data: Exam_Score by Group
## t = -3.8593, df = 78, p-value = 0.000233
## alternative hypothesis: true difference in means between group No Tutoring and group Tutoring is not equal to 0
## 95 percent confidence interval:
## -9.724543 -3.105845
## sample estimates:
## mean in group No Tutoring mean in group Tutoring
## 71.94627 78.36147
cohens_d_result <- cohens_d(Exam_Score ~ Group, data = Dataset6.1, pooled_sd = TRUE)
print(cohens_d_result)
## Cohen's d | 95% CI
## --------------------------
## -0.86 | [-1.32, -0.40]
##
## - Estimated using pooled SD.
#STEP 10: FINAL RESULTS REPORT