library(readxl)
library(ggpubr)
## Loading required package: ggplot2
library(effectsize)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following objects are masked from 'package:effectsize':
##
## cohens_d, eta_squared
## The following object is masked from 'package:stats':
##
## filter
Dataset6.4 <- read_excel("/Volumes/Anup/SLU/3rd Sem/Applied Analytics/Assignment 6/Dataset6.4.xlsx")
Before <- Dataset6.4$Stress_Pre
After <- Dataset6.4$Stress_Post
Differences <- Before - After
##Calculating Descriptive Statistics for Each Group
mean(Before, na.rm = TRUE)
## [1] 51.53601
median(Before, na.rm = TRUE)
## [1] 47.24008
sd(Before, na.rm = TRUE)
## [1] 17.21906
mean(After, na.rm = TRUE)
## [1] 41.4913
median(After, na.rm = TRUE)
## [1] 40.84836
sd(After, na.rm = TRUE)
## [1] 18.88901
hist(Differences,
main = "Histogram of Difference Scores",
xlab = "Value",
ylab = "Frequency",
col = "blue",
border = "black",
breaks = 20)
boxplot(Differences,
main = "Distribution of Stress Level Differences (After - Before)",
ylab = "Difference in Stress Level",
col = "blue",
border = "darkblue")
shapiro.test(Differences)
##
## Shapiro-Wilk normality test
##
## data: Differences
## W = 0.87495, p-value = 0.0008963
wilcox.test(Before, After, paired = TRUE)
##
## Wilcoxon signed rank exact test
##
## data: Before and After
## V = 620, p-value = 2.503e-09
## alternative hypothesis: true location shift is not equal to 0
df_long <- data.frame(
id = rep(1:length(Before), 2),
time = rep(c("Before", "After"), each = length(Before)),
score = c(Before, After)
)
wilcox_effsize(df_long, score ~ time, paired = TRUE)
## # A tibble: 1 × 7
## .y. group1 group2 effsize n1 n2 magnitude
## * <chr> <chr> <chr> <dbl> <int> <int> <ord>
## 1 score After Before 0.844 35 35 large