installing the Required Packages install.packages(“readxl”) install.packages(“ggplot2”) install.packages(“rcompanion”)
Opening the Installed Packages
library(readxl)
library(ggplot2)
library(rcompanion)
loading DatasetB2
DatasetB2 <- read_excel("C:/Users/datta/Downloads/DatasetB2.xlsx")
Creating a Contingency Table
tab <- table(DatasetB2$StudentType, DatasetB2$PetOwnership)
tab
##
## No Yes
## Domestic 27 25
## International 23 25
Creating a Bar Charts
p <- ggplot(DatasetB2, aes(x = StudentType, fill = PetOwnership)) +
geom_bar(position = "dodge") +
labs(
x = "StudentType",
y = "Frequency",
title = "Pet Ownership by Student Type"
) +
theme(
text = element_text(size = 14),
axis.title = element_text(size = 14),
axis.text = element_text(size = 14),
plot.title = element_text(size = 14),
legend.position = "none"
)
print(p)
Conducting Chi-Square Test of Independence
chisq.test(tab)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: tab
## X-squared = 0.040064, df = 1, p-value = 0.8414
Interpret and Report the Results
The Chi-Square Test of Independence indicated there was/ was not a
significant association between gender and voting behavior, χ²(1) =
0.040064, p = 0.8414.
P value 0.8414>0.05 so it is not statistically significant so there is no need to calculate Effect size