R Markdown

# Running the packages first
library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.2.0     ✔ readr     2.1.6
## ✔ forcats   1.0.1     ✔ stringr   1.6.0
## ✔ ggplot2   4.0.2     ✔ tibble    3.3.1
## ✔ lubridate 1.9.5     ✔ tidyr     1.3.2
## ✔ purrr     1.2.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# Set working directory
district<-read_excel("district.xls")
# Creating a new data frame with District name, special education percentage
# and money spent on special education

special_education<-district %>% select(DISTNAME,DPFPASPEP,DPETSPEP)
# Summary Statistics for DPETSPEP and DPFPASPEP 

summary(special_education)
##    DISTNAME           DPFPASPEP         DPETSPEP    
##  Length:1207        Min.   : 0.000   Min.   : 0.00  
##  Class :character   1st Qu.: 5.800   1st Qu.: 9.90  
##  Mode  :character   Median : 8.900   Median :12.10  
##                     Mean   : 9.711   Mean   :12.27  
##                     3rd Qu.:12.500   3rd Qu.:14.20  
##                     Max.   :49.000   Max.   :51.70  
##                     NA's   :5
# DPFPASPEP, money spent on special education has five missing values 
# I will attempt to remove them below with this careful extraction power
# of na

special_education_new <- special_education %>% drop_na(DPFPASPEP)

#after dropping five missing values, we have 1,202 observations left
# Attemping to create a graph, though not required
# I am not sure if this is correct

ggplot(special_education_new,aes(x=DPETSPEP,y=DPFPASPEP)) + geom_point()

# Mathematical check

cor(special_education_new$DPETSPEP,special_education_new$DPFPASPEP)
## [1] 0.3700234
# Result is 0.3700234
# The mathematical check indicate a positive correlation, although not as 
# strong as we would like it to be. The closer the mathematical check is to
# 1, the stronger the correlation, and the closer to zero the weaker.