Importar la base de datos de csv

# Cargar al environment
library(readr)
HousePriceData <- read_csv("~/Conexión de interfaces/Conexión de interfaces/HousePriceData.csv")
## Rows: 905 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Parking, City_Category
## dbl (8): Observation, Dist_Taxi, Dist_Market, Dist_Hospital, Carpet, Builtup...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# file.choose("~/Conexión de interfaces/Conexión de interfaces/rentadebicis.csv")
data <- HousePriceData

Entender la base de datos

str(data)
## spc_tbl_ [905 × 10] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Observation  : num [1:905] 1 2 3 4 5 6 7 8 9 10 ...
##  $ Dist_Taxi    : num [1:905] 9796 8294 11001 8301 10510 ...
##  $ Dist_Market  : num [1:905] 5250 8186 14399 11188 12629 ...
##  $ Dist_Hospital: num [1:905] 10703 12694 16991 12289 13921 ...
##  $ Carpet       : num [1:905] 1659 1461 1340 1451 1770 ...
##  $ Builtup      : num [1:905] 1961 1752 1609 1748 2111 ...
##  $ Parking      : chr [1:905] "Open" "Not Provided" "Not Provided" "Covered" ...
##  $ City_Category: chr [1:905] "CAT B" "CAT B" "CAT A" "CAT B" ...
##  $ Rainfall     : num [1:905] 530 210 720 620 450 760 1030 1020 680 1130 ...
##  $ House_Price  : num [1:905] 6649000 3982000 5401000 5373000 4662000 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   Observation = col_double(),
##   ..   Dist_Taxi = col_double(),
##   ..   Dist_Market = col_double(),
##   ..   Dist_Hospital = col_double(),
##   ..   Carpet = col_double(),
##   ..   Builtup = col_double(),
##   ..   Parking = col_character(),
##   ..   City_Category = col_character(),
##   ..   Rainfall = col_double(),
##   ..   House_Price = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
summary(data)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 

Generar el Modelo

regresión <- lm(House_Price ~ Carpet + Builtup + factor(Parking) + factor(City_Category), data = data)
summary(regresión)
## 
## Call:
## lm(formula = House_Price ~ Carpet + Builtup + factor(Parking) + 
##     factor(City_Category), data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3430967  -802513   -46915   775070  4263090 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  6477702.2   272077.2  23.808  < 2e-16 ***
## Carpet                          9968.8      143.3  69.584  < 2e-16 ***
## Builtup                        -7611.6      243.3 -31.279  < 2e-16 ***
## factor(Parking)No Parking    -536301.8   139943.6  -3.832 0.000136 ***
## factor(Parking)Not Provided  -457380.4   125020.1  -3.658 0.000269 ***
## factor(Parking)Open          -236576.3   114356.8  -2.069 0.038857 *  
## factor(City_Category)CAT B  -1918518.1    97007.4 -19.777  < 2e-16 ***
## factor(City_Category)CAT C  -2908756.6   107359.6 -27.094  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1243000 on 890 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.9412, Adjusted R-squared:  0.9407 
## F-statistic:  2034 on 7 and 890 DF,  p-value: < 2.2e-16

Pronósticos

datos_nuevos <- within(data.frame(Carpet=1477, Builtup=1774, Parking="Open", City_Category="CAT A"), { Parking <- factor(Parking, levels=levels(factor(data$Parking))); City_Category <- factor(City_Category, levels=levels(factor(data$City_Category))) })
predict(regresión, newdata = datos_nuevos)
##       1 
## 7461982

Conclusiones

Es un modelo altamente significativo y con poder explicativo muy alto, con un R² ajustado de 0.9407.

El Parking influye, ya que varias categorías salen con precio menor contra la referencia.

La categoría de ciudad pesa muchísimo, ya que CAT B y CAT C reducen fuerte el precio.

LS0tCnRpdGxlOiAiUmVncmVzacOzbiBMaW5lYWwgLSBIb3VzZSBQcmljaW5nIgphdXRob3I6ICJKZXPDunMgR2VyYXJkbyBTb2xhbm8gRMOtYXogQTAwMjI4MTU1IgpkYXRlOiAiMjAyNi0wMi0xNyIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBjb3NtbwotLS0KCiMgSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcyBkZSBjc3YKYGBge3J9CiMgQ2FyZ2FyIGFsIGVudmlyb25tZW50CmxpYnJhcnkocmVhZHIpCkhvdXNlUHJpY2VEYXRhIDwtIHJlYWRfY3N2KCJ+L0NvbmV4acOzbiBkZSBpbnRlcmZhY2VzL0NvbmV4acOzbiBkZSBpbnRlcmZhY2VzL0hvdXNlUHJpY2VEYXRhLmNzdiIpCiMgZmlsZS5jaG9vc2UoIn4vQ29uZXhpw7NuIGRlIGludGVyZmFjZXMvQ29uZXhpw7NuIGRlIGludGVyZmFjZXMvcmVudGFkZWJpY2lzLmNzdiIpCmRhdGEgPC0gSG91c2VQcmljZURhdGEKYGBgCiMgRW50ZW5kZXIgbGEgYmFzZSBkZSBkYXRvcwpgYGB7cn0Kc3RyKGRhdGEpCnN1bW1hcnkoZGF0YSkKYGBgCgojIEdlbmVyYXIgZWwgTW9kZWxvCmBgYHtyfQpyZWdyZXNpw7NuIDwtIGxtKEhvdXNlX1ByaWNlIH4gQ2FycGV0ICsgQnVpbHR1cCArIGZhY3RvcihQYXJraW5nKSArIGZhY3RvcihDaXR5X0NhdGVnb3J5KSwgZGF0YSA9IGRhdGEpCnN1bW1hcnkocmVncmVzacOzbikKYGBgCgojIFByb27Ds3N0aWNvcwpgYGB7cn0KZGF0b3NfbnVldm9zIDwtIHdpdGhpbihkYXRhLmZyYW1lKENhcnBldD0xNDc3LCBCdWlsdHVwPTE3NzQsIFBhcmtpbmc9Ik9wZW4iLCBDaXR5X0NhdGVnb3J5PSJDQVQgQSIpLCB7IFBhcmtpbmcgPC0gZmFjdG9yKFBhcmtpbmcsIGxldmVscz1sZXZlbHMoZmFjdG9yKGRhdGEkUGFya2luZykpKTsgQ2l0eV9DYXRlZ29yeSA8LSBmYWN0b3IoQ2l0eV9DYXRlZ29yeSwgbGV2ZWxzPWxldmVscyhmYWN0b3IoZGF0YSRDaXR5X0NhdGVnb3J5KSkpIH0pCnByZWRpY3QocmVncmVzacOzbiwgbmV3ZGF0YSA9IGRhdG9zX251ZXZvcykKYGBgCgojIENvbmNsdXNpb25lcwoKRXMgdW4gbW9kZWxvIGFsdGFtZW50ZSBzaWduaWZpY2F0aXZvIHkgY29uIHBvZGVyIGV4cGxpY2F0aXZvIG11eSBhbHRvLCBjb24gdW4gUsKyIGFqdXN0YWRvIGRlIDAuOTQwNy4KCkVsIFBhcmtpbmcgaW5mbHV5ZSwgeWEgcXVlIHZhcmlhcyBjYXRlZ29yw61hcyBzYWxlbiBjb24gcHJlY2lvIG1lbm9yIGNvbnRyYSBsYSByZWZlcmVuY2lhLgoKTGEgY2F0ZWdvcsOtYSBkZSBjaXVkYWQgcGVzYSBtdWNow61zaW1vLCB5YSBxdWUgQ0FUIEIgeSBDQVQgQyByZWR1Y2VuIGZ1ZXJ0ZSBlbCBwcmVjaW8uCgo=