df <- read.csv("C:\\Users\\karla\\Desktop\\CONCENTRACION\\Modulo_progra\\HousePriceData.csv")
str(df)
## 'data.frame': 905 obs. of 10 variables:
## $ Observation : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Dist_Taxi : int 9796 8294 11001 8301 10510 6665 13153 5882 7495 8233 ...
## $ Dist_Market : int 5250 8186 14399 11188 12629 5142 11869 9948 11589 7067 ...
## $ Dist_Hospital: int 10703 12694 16991 12289 13921 9972 17811 13315 13370 11400 ...
## $ Carpet : int 1659 1461 1340 1451 1770 1442 1542 1261 1090 1030 ...
## $ Builtup : int 1961 1752 1609 1748 2111 1733 1858 1507 1321 1235 ...
## $ Parking : chr "Open" "Not Provided" "Not Provided" "Covered" ...
## $ City_Category: chr "CAT B" "CAT B" "CAT A" "CAT B" ...
## $ Rainfall : int 530 210 720 620 450 760 1030 1020 680 1130 ...
## $ House_Price : int 6649000 3982000 5401000 5373000 4662000 4526000 7224000 3772000 4631000 4415000 ...
summary(df)
## Observation Dist_Taxi Dist_Market Dist_Hospital
## Min. : 1.0 Min. : 146 Min. : 1666 Min. : 3227
## 1st Qu.:237.0 1st Qu.: 6477 1st Qu.: 9367 1st Qu.:11302
## Median :469.0 Median : 8228 Median :11149 Median :13189
## Mean :468.4 Mean : 8235 Mean :11022 Mean :13091
## 3rd Qu.:700.0 3rd Qu.: 9939 3rd Qu.:12675 3rd Qu.:14855
## Max. :932.0 Max. :20662 Max. :20945 Max. :23294
##
## Carpet Builtup Parking City_Category
## Min. : 775 Min. : 932 Length:905 Length:905
## 1st Qu.: 1317 1st Qu.: 1579 Class :character Class :character
## Median : 1478 Median : 1774 Mode :character Mode :character
## Mean : 1511 Mean : 1794
## 3rd Qu.: 1654 3rd Qu.: 1985
## Max. :24300 Max. :12730
## NA's :7
## Rainfall House_Price
## Min. :-110.0 Min. : 1492000
## 1st Qu.: 600.0 1st Qu.: 4623000
## Median : 780.0 Median : 5860000
## Mean : 786.9 Mean : 6083992
## 3rd Qu.: 970.0 3rd Qu.: 7200000
## Max. :1560.0 Max. :150000000
##
boxplot(df$House_Price)
which(df$House_Price %in% boxplot.stats(df$House_Price)$out)
## [1] 348 659
df[c(348, 659), ]
## Observation Dist_Taxi Dist_Market Dist_Hospital Carpet Builtup Parking
## 348 361 20662 20945 23294 24300 12730 Covered
## 659 679 7288 9560 12531 1989 2414 No Parking
## City_Category Rainfall House_Price
## 348 CAT B 1130 150000000
## 659 CAT A 860 11632000
df_clean <- df[-348, ]
regresion <- lm(House_Price ~ Observation +
Dist_Hospital + Carpet + Builtup +
factor(Parking) + factor(City_Category),
data = df)
summary(regresion)
##
## Call:
## lm(formula = House_Price ~ Observation + Dist_Hospital + Carpet +
## Builtup + factor(Parking) + factor(City_Category), data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3655901 -815219 -56150 787929 4464813
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.247e+06 3.459e+05 15.168 < 2e-16 ***
## Observation 4.059e+02 1.522e+02 2.666 0.0078 **
## Dist_Hospital 7.921e+01 1.607e+01 4.928 9.90e-07 ***
## Carpet 9.905e+03 1.414e+02 70.058 < 2e-16 ***
## Builtup -7.552e+03 2.397e+02 -31.506 < 2e-16 ***
## factor(Parking)No Parking -6.109e+05 1.385e+05 -4.411 1.15e-05 ***
## factor(Parking)Not Provided -4.909e+05 1.233e+05 -3.980 7.44e-05 ***
## factor(Parking)Open -2.566e+05 1.126e+05 -2.279 0.0229 *
## factor(City_Category)CAT B -1.875e+06 9.573e+04 -19.588 < 2e-16 ***
## factor(City_Category)CAT C -2.894e+06 1.056e+05 -27.394 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1223000 on 888 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.9432, Adjusted R-squared: 0.9426
## F-statistic: 1639 on 9 and 888 DF, p-value: < 2.2e-16
datos_nuevos <- data.frame(
Observation = 1,
Dist_Hospital = 1000,
Carpet = 1500,
Builtup = 1800,
Parking = "Open",
City_Category = "CAT B"
)
predict(regresion, datos_nuevos)
## 1
## 4458332
mean(df$House_Price)
## [1] 6083992
median(df$House_Price)
## [1] 5860000
El modelo predice que una vivienda con 1500 de área carpet m2, 1800 m2 construidos, ubicada en una ciudad categoría B, con estacionamiento abierto y a 1000 metros de un hospital, tiene un valor estimado de 4,458,332.