Regresión Lineal

Importar la base de datos de csv

data <- read.csv("C:\\Users\\maria\\OneDrive\\Escritorio\\TEC\\Semestre 6\\HousePriceData.csv")

Entender la base de datos

str(data)
## 'data.frame':    905 obs. of  10 variables:
##  $ Observation  : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Dist_Taxi    : int  9796 8294 11001 8301 10510 6665 13153 5882 7495 8233 ...
##  $ Dist_Market  : int  5250 8186 14399 11188 12629 5142 11869 9948 11589 7067 ...
##  $ Dist_Hospital: int  10703 12694 16991 12289 13921 9972 17811 13315 13370 11400 ...
##  $ Carpet       : int  1659 1461 1340 1451 1770 1442 1542 1261 1090 1030 ...
##  $ Builtup      : int  1961 1752 1609 1748 2111 1733 1858 1507 1321 1235 ...
##  $ Parking      : chr  "Open" "Not Provided" "Not Provided" "Covered" ...
##  $ City_Category: chr  "CAT B" "CAT B" "CAT A" "CAT B" ...
##  $ Rainfall     : int  530 210 720 620 450 760 1030 1020 680 1130 ...
##  $ House_Price  : int  6649000 3982000 5401000 5373000 4662000 4526000 7224000 3772000 4631000 4415000 ...
summary(data)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 

Generar el Modelo

regresion <- lm(
  House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital +
    Carpet + Builtup + factor(Parking) + factor(City_Category) + Rainfall,
  data = data,
  na.action = na.omit
)
summary(regresion)
## 
## Call:
## lm(formula = House_Price ~ Dist_Taxi + Dist_Market + Dist_Hospital + 
##     Carpet + Builtup + factor(Parking) + factor(City_Category) + 
##     Rainfall, data = data, na.action = na.omit)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3586934  -837542   -65314   784513  4577689 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  5.568e+06  3.688e+05  15.097  < 2e-16 ***
## Dist_Taxi                    2.834e+01  2.694e+01   1.052   0.2931    
## Dist_Market                  1.237e+01  2.089e+01   0.592   0.5538    
## Dist_Hospital                5.071e+01  3.021e+01   1.679   0.0936 .  
## Carpet                       9.907e+03  1.428e+02  69.398  < 2e-16 ***
## Builtup                     -7.575e+03  2.412e+02 -31.403  < 2e-16 ***
## factor(Parking)No Parking   -6.170e+05  1.393e+05  -4.429 1.06e-05 ***
## factor(Parking)Not Provided -5.077e+05  1.239e+05  -4.096 4.58e-05 ***
## factor(Parking)Open         -2.597e+05  1.131e+05  -2.297   0.0218 *  
## factor(City_Category)CAT B  -1.883e+06  9.641e+04 -19.529  < 2e-16 ***
## factor(City_Category)CAT C  -2.902e+06  1.062e+05 -27.321  < 2e-16 ***
## Rainfall                    -9.984e+01  1.548e+02  -0.645   0.5191    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1228000 on 886 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.9429, Adjusted R-squared:  0.9422 
## F-statistic:  1329 on 11 and 886 DF,  p-value: < 2.2e-16

Predicción

datos_nuevos <- data.frame(
  Dist_Taxi = 9000,
  Dist_Market = 6000,
  Dist_Hospital = 12000,
  Carpet = 1600,
  Builtup = 1900,
  Parking = "Open",         
  City_Category = "CAT B",   
  Rainfall = 500
)
predict(regresion, newdata = datos_nuevos)
##       1 
## 5772055

Conclusiones

El análisis indica que el valor de una vivienda está determinado sobre todo por su tamaño, la ciudad en la que se ubica y si cuenta con estacionamiento. En cambio, factores como la cercanía a servicios o el nivel de lluvia no tienen un impacto relevante en este caso.

El modelo presenta un buen desempeño, ya que logra explicar la mayor parte de la variación en los precios observados. Con base en la información disponible, se calculó que una casa con esas características tendría un precio estimado de aproximadamente 5,772,055.

En resumen, este modelo es útil para identificar cuáles variables influyen realmente en el precio y para proyectar el valor de propiedades similares.