q1 <- inner_join(customers, orders)
## Joining with `by = join_by(customer_id)`
The resulting data has 4 rows
Because the customers and orders that are not included did not have a match in the other table.
head(q1)
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
q2 <- left_join(customers, orders)
## Joining with `by = join_by(customer_id)`
The resulting data has 6 rows
All rows from the customers table are included, even if they dont have an order.
head(q2)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
q3 <- right_join(customers,orders)
## Joining with `by = join_by(customer_id)`
The resulting data set has 6 rows
Customer id 6 and 7 have no result for name and city with their orders because there is no matching customer id in that data table
head(q3)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 6 <NA> <NA> 105 Camera 600
## 6 7 <NA> <NA> 106 Printer 150
q4 <- full_join(customers, orders)
## Joining with `by = join_by(customer_id)`
The resulting data has 8 rows
Rows 5-8 are all missing information in some areas. All rows from both tables are included, with NA where there’s no match. Meaning customers 4 and 5 haven’t placed an order, and customers 6 and 7 don’t have an id in the data set.
head(q4)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
q5 <- semi_join(customers, orders)
## Joining with `by = join_by(customer_id)`
The resulting data has 3 rows
Only customers with order information are returned, and order data isn’t included.
head(q5)
## # A tibble: 3 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 1 Alice New York
## 2 2 Bob Los Angeles
## 3 3 Charlie Chicago
q6 <- anti_join(customers, orders)
## Joining with `by = join_by(customer_id)`
Customers 4 and 5
This result tells us that they have not made an order yet because only customers without order information are returned
head(q6)
## # A tibble: 2 × 3
## customer_id name city
## <dbl> <chr> <chr>
## 1 4 David Houston
## 2 5 Eve Phoenix
A left join because it keeps every row from the first (left) table. If a customer hasn’t placed an order, the order-related column will simply show N/A. That is why its the best option when you want a complete database, regardless of their activity.
An inner join because it only returns rows where there is a match in both data tables. If a customer id exists in the customer table, but not the orders, that customer will be excused fro, the results.
q7 <- left_join(customers, orders)
## Joining with `by = join_by(customer_id)`
q77 <- inner_join(customers, orders)
## Joining with `by = join_by(customer_id)`
head(q7)
## # A tibble: 6 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
## 5 4 David Houston NA <NA> NA
## 6 5 Eve Phoenix NA <NA> NA
head(q77)
## # A tibble: 4 × 6
## customer_id name city order_id product amount
## <dbl> <chr> <chr> <dbl> <chr> <dbl>
## 1 1 Alice New York 101 Laptop 1200
## 2 2 Bob Los Angeles 102 Phone 800
## 3 2 Bob Los Angeles 104 Desktop 1500
## 4 3 Charlie Chicago 103 Tablet 300
customer_summary <- customers %>%
left_join(orders, by = "customer_id") %>%
group_by(customer_id, name, city) %>%
summarize(
total_orders = sum(!is.na(order_id)), # count only real orders
total_spent = sum(amount, na.rm = TRUE),
.groups = "drop"
)
head(customer_summary)
## # A tibble: 5 × 5
## customer_id name city total_orders total_spent
## <dbl> <chr> <chr> <int> <dbl>
## 1 1 Alice New York 1 1200
## 2 2 Bob Los Angeles 2 2300
## 3 3 Charlie Chicago 1 300
## 4 4 David Houston 0 0
## 5 5 Eve Phoenix 0 0