library(readxl)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.6
## ✔ forcats 1.0.1 ✔ stringr 1.6.0
## ✔ ggplot2 4.0.1 ✔ tibble 3.3.1
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.2
## ✔ purrr 1.2.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
district<-read_excel("district.xls")
spec_ed_df <- district %>% select(DISTNAME,DPETSPEP,DPFPASPEP)
summary(spec_ed_df$DPETSPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 9.90 12.10 12.27 14.20 51.70
summary(spec_ed_df$DPFPASPEP)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.000 5.800 8.900 9.711 12.500 49.000 5
# Variable DPFPASPEP has the missing variables (5)
spec_ed_clean <- spec_ed_df %>% drop_na(DPFPASPEP)
#There are 1202 observations left after cleaning out the na's.
cor(spec_ed_clean$DPETSPEP, spec_ed_clean$DPFPASPEP)
## [1] 0.3700234
#The results of the correlation are [1] 0.3700234.
#The .37 is a weak positive correlation.
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this: