Regresión Lineal

#Importar la base de datos de csv

data <- read.csv("C:\\Users\\Emili\\Downloads\\HousePriceData.csv")
# Usar file.choose()
# Entender la base de datos
str(data)
## 'data.frame':    905 obs. of  10 variables:
##  $ Observation  : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Dist_Taxi    : int  9796 8294 11001 8301 10510 6665 13153 5882 7495 8233 ...
##  $ Dist_Market  : int  5250 8186 14399 11188 12629 5142 11869 9948 11589 7067 ...
##  $ Dist_Hospital: int  10703 12694 16991 12289 13921 9972 17811 13315 13370 11400 ...
##  $ Carpet       : int  1659 1461 1340 1451 1770 1442 1542 1261 1090 1030 ...
##  $ Builtup      : int  1961 1752 1609 1748 2111 1733 1858 1507 1321 1235 ...
##  $ Parking      : chr  "Open" "Not Provided" "Not Provided" "Covered" ...
##  $ City_Category: chr  "CAT B" "CAT B" "CAT A" "CAT B" ...
##  $ Rainfall     : int  530 210 720 620 450 760 1030 1020 680 1130 ...
##  $ House_Price  : int  6649000 3982000 5401000 5373000 4662000 4526000 7224000 3772000 4631000 4415000 ...
summary(data)
##   Observation      Dist_Taxi      Dist_Market    Dist_Hospital  
##  Min.   :  1.0   Min.   :  146   Min.   : 1666   Min.   : 3227  
##  1st Qu.:237.0   1st Qu.: 6477   1st Qu.: 9367   1st Qu.:11302  
##  Median :469.0   Median : 8228   Median :11149   Median :13189  
##  Mean   :468.4   Mean   : 8235   Mean   :11022   Mean   :13091  
##  3rd Qu.:700.0   3rd Qu.: 9939   3rd Qu.:12675   3rd Qu.:14855  
##  Max.   :932.0   Max.   :20662   Max.   :20945   Max.   :23294  
##                                                                 
##      Carpet         Builtup        Parking          City_Category     
##  Min.   :  775   Min.   :  932   Length:905         Length:905        
##  1st Qu.: 1317   1st Qu.: 1579   Class :character   Class :character  
##  Median : 1478   Median : 1774   Mode  :character   Mode  :character  
##  Mean   : 1511   Mean   : 1794                                        
##  3rd Qu.: 1654   3rd Qu.: 1985                                        
##  Max.   :24300   Max.   :12730                                        
##  NA's   :7                                                            
##     Rainfall       House_Price       
##  Min.   :-110.0   Min.   :  1492000  
##  1st Qu.: 600.0   1st Qu.:  4623000  
##  Median : 780.0   Median :  5860000  
##  Mean   : 786.9   Mean   :  6083992  
##  3rd Qu.: 970.0   3rd Qu.:  7200000  
##  Max.   :1560.0   Max.   :150000000  
## 

Generar el Modelo

regresion <- lm(House_Price ~ factor(Parking) + factor(City_Category) + 
                Dist_Taxi + Dist_Market + Dist_Hospital + 
                Carpet + Builtup + Rainfall, data = data)
summary(regresion)
## 
## Call:
## lm(formula = House_Price ~ factor(Parking) + factor(City_Category) + 
##     Dist_Taxi + Dist_Market + Dist_Hospital + Carpet + Builtup + 
##     Rainfall, data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -3586934  -837542   -65314   784513  4577689 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  5.568e+06  3.688e+05  15.097  < 2e-16 ***
## factor(Parking)No Parking   -6.170e+05  1.393e+05  -4.429 1.06e-05 ***
## factor(Parking)Not Provided -5.077e+05  1.239e+05  -4.096 4.58e-05 ***
## factor(Parking)Open         -2.597e+05  1.131e+05  -2.297   0.0218 *  
## factor(City_Category)CAT B  -1.883e+06  9.641e+04 -19.529  < 2e-16 ***
## factor(City_Category)CAT C  -2.902e+06  1.062e+05 -27.321  < 2e-16 ***
## Dist_Taxi                    2.834e+01  2.694e+01   1.052   0.2931    
## Dist_Market                  1.237e+01  2.089e+01   0.592   0.5538    
## Dist_Hospital                5.071e+01  3.021e+01   1.679   0.0936 .  
## Carpet                       9.907e+03  1.428e+02  69.398  < 2e-16 ***
## Builtup                     -7.575e+03  2.412e+02 -31.403  < 2e-16 ***
## Rainfall                    -9.984e+01  1.548e+02  -0.645   0.5191    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1228000 on 886 degrees of freedom
##   (7 observations deleted due to missingness)
## Multiple R-squared:  0.9429, Adjusted R-squared:  0.9422 
## F-statistic:  1329 on 11 and 886 DF,  p-value: < 2.2e-16

#Generar pronostico

datos_nuevos <- data.frame(
  Parking = "Open",
  City_Category = "CAT B",
  Dist_Taxi = 8000,
  Dist_Market = 11000,
  Dist_Hospital = 13000,
  Carpet = 1500,
  Builtup = 1800,
  Rainfall = 780
)

prediccion <- predict(regresion, datos_nuevos)
cat("El precio estimado para la casa es:", prediccion)
## El precio estimado para la casa es: 5595150

Conclusiones

#El tamaño del área interna (Carpet) y la Categoría de la Ciudad son los factores que más afectan el precio. Las casas en CAT A son significativamente más caras que en B o C.

#Tener un estacionamiento techado (Covered) aumenta el valor de la propiedad en comparación con no tenerlo o tenerlo abierto.

#Las distancias (al hospital, mercado o taxi) y el nivel de lluvia (Rainfall) no influyen significativamente en el precio final según los datos.

#El modelo tiene un R-cuadrado de 0.94, lo que significa que explica el 94% de la variación de los precios, siendo muy confiable para hacer predicciones.
LS0tDQp0aXRsZTogIkhvdXNlIFByaWNpbmciDQphdXRob3I6ICJFbWlsaW8gVmlsbGFudWV2YSAtIEEwMTI4NTkxMCINCmRhdGU6ICIyMDI2LTAyLTE3Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDogIA0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogY29zbW8NCi0tLQ0KDQojIFJlZ3Jlc2nDs24gTGluZWFsDQojSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcyBkZSBjc3YNCg0KYGBge3J9DQpkYXRhIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXEVtaWxpXFxEb3dubG9hZHNcXEhvdXNlUHJpY2VEYXRhLmNzdiIpDQojIFVzYXIgZmlsZS5jaG9vc2UoKQ0KIyBFbnRlbmRlciBsYSBiYXNlIGRlIGRhdG9zDQpzdHIoZGF0YSkNCnN1bW1hcnkoZGF0YSkNCmBgYA0KDQoNCiMgR2VuZXJhciBlbCBNb2RlbG8NCg0KYGBge3J9DQpyZWdyZXNpb24gPC0gbG0oSG91c2VfUHJpY2UgfiBmYWN0b3IoUGFya2luZykgKyBmYWN0b3IoQ2l0eV9DYXRlZ29yeSkgKyANCiAgICAgICAgICAgICAgICBEaXN0X1RheGkgKyBEaXN0X01hcmtldCArIERpc3RfSG9zcGl0YWwgKyANCiAgICAgICAgICAgICAgICBDYXJwZXQgKyBCdWlsdHVwICsgUmFpbmZhbGwsIGRhdGEgPSBkYXRhKQ0Kc3VtbWFyeShyZWdyZXNpb24pDQpgYGANCg0KI0dlbmVyYXIgcHJvbm9zdGljbw0KYGBge3J9DQpkYXRvc19udWV2b3MgPC0gZGF0YS5mcmFtZSgNCiAgUGFya2luZyA9ICJPcGVuIiwNCiAgQ2l0eV9DYXRlZ29yeSA9ICJDQVQgQiIsDQogIERpc3RfVGF4aSA9IDgwMDAsDQogIERpc3RfTWFya2V0ID0gMTEwMDAsDQogIERpc3RfSG9zcGl0YWwgPSAxMzAwMCwNCiAgQ2FycGV0ID0gMTUwMCwNCiAgQnVpbHR1cCA9IDE4MDAsDQogIFJhaW5mYWxsID0gNzgwDQopDQoNCnByZWRpY2Npb24gPC0gcHJlZGljdChyZWdyZXNpb24sIGRhdG9zX251ZXZvcykNCmNhdCgiRWwgcHJlY2lvIGVzdGltYWRvIHBhcmEgbGEgY2FzYSBlczoiLCBwcmVkaWNjaW9uKQ0KYGBgDQojIENvbmNsdXNpb25lcw0KDQpgYGB7cn0NCiNFbCB0YW1hw7FvIGRlbCDDoXJlYSBpbnRlcm5hIChDYXJwZXQpIHkgbGEgQ2F0ZWdvcsOtYSBkZSBsYSBDaXVkYWQgc29uIGxvcyBmYWN0b3JlcyBxdWUgbcOhcyBhZmVjdGFuIGVsIHByZWNpby4gTGFzIGNhc2FzIGVuIENBVCBBIHNvbiBzaWduaWZpY2F0aXZhbWVudGUgbcOhcyBjYXJhcyBxdWUgZW4gQiBvIEMuDQoNCiNUZW5lciB1biBlc3RhY2lvbmFtaWVudG8gdGVjaGFkbyAoQ292ZXJlZCkgYXVtZW50YSBlbCB2YWxvciBkZSBsYSBwcm9waWVkYWQgZW4gY29tcGFyYWNpw7NuIGNvbiBubyB0ZW5lcmxvIG8gdGVuZXJsbyBhYmllcnRvLg0KDQojTGFzIGRpc3RhbmNpYXMgKGFsIGhvc3BpdGFsLCBtZXJjYWRvIG8gdGF4aSkgeSBlbCBuaXZlbCBkZSBsbHV2aWEgKFJhaW5mYWxsKSBubyBpbmZsdXllbiBzaWduaWZpY2F0aXZhbWVudGUgZW4gZWwgcHJlY2lvIGZpbmFsIHNlZ8O6biBsb3MgZGF0b3MuDQoNCiNFbCBtb2RlbG8gdGllbmUgdW4gUi1jdWFkcmFkbyBkZSAwLjk0LCBsbyBxdWUgc2lnbmlmaWNhIHF1ZSBleHBsaWNhIGVsIDk0JSBkZSBsYSB2YXJpYWNpw7NuIGRlIGxvcyBwcmVjaW9zLCBzaWVuZG8gbXV5IGNvbmZpYWJsZSBwYXJhIGhhY2VyIHByZWRpY2Npb25lcy4NCmBgYA==